• Title/Summary/Keyword: 근육 사용도

Search Result 730, Processing Time 0.034 seconds

Role of p-anisaldehyde in the Differentiation of C2C12 Myoblasts (C2C12 근육모세포의 분화에서 p-anisaldehyde의 역할)

  • Dal-Ah KIM;Kyoung Hye KONG;Hyun-Jeong CHO;Mi-Ran LEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.184-194
    • /
    • 2023
  • In this study, we investigated whether p-anisaldehyde (PAA), the main component of essential oils derived from anise seeds, influences the differentiation of mouse C2C12 myoblasts. Cells were induced to differentiate over 5 days using a differentiation medium with or without PAA (50 or 200 mg/mL). Myotube length and diameter were measured, and the expressions of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) were assessed by quantitative real-time polymerase chain reaction. Additionally, protein kinase B (Akt) phosphorylation was monitored by western blotting. PAA significantly induced the formation of smaller and thinner myotubes and reduced myogenic marker expression. Furthermore, PAA increased the expressions of atrogin-1 and MuRF-1 and simultaneously reduced Akt phosphorylation. Our findings indicate that PAA inhibits the myogenic differentiation of C2C12 cells by reducing the phosphorylation and activation of Akt.

sEMG Signal based Gait Phase Recognition Method for Selecting Features and Channels Adaptively (적응적으로 특징과 채널을 선택하는 sEMG 신호기반 보행단계 인식기법)

  • Ryu, J.H.;Kim, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.19-26
    • /
    • 2013
  • This paper propose a surface EMG signal based gait phase recognition method that selects features and channels adaptively. The proposed method can be used to control powered artificial prosthetic for lower limb amputees and can reduce overhead in real-time pattern recognition by selecting adaptive channels and features in an embedded device. The method can enhance the classification accuracy by adaptively selecting channels and features based on sensitivity and specificity of each subject because EMG signal patterns may vary according to subject's locomotion convention. In the experiments, we found that the muscles with highest recognition rate are different between human subjects. The results also show that the average accuracy of the proposed method is about 91% whereas those of existing methods using all channels and/or features is about 50%. Therefore we assure that sEMG signal based gait phase recognition using small number of adaptive muscles and corresponding features can be applied to control powered artificial prosthetic for lower limb amputees.

  • PDF

Application of Enzymatic method to Determine Choline Concentration in Bovine Blood and Muscle (소의 혈액 및 근육 중 choline 농도 분석을 위한 효소측정법의 적용기법의 개발)

  • Kim, Young-Il;Jung, Won-Chul;Shon, Ho-Yeong;Kim, Suk;Hur, Yoen;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.271-275
    • /
    • 2008
  • Choline is important an organic compound for normal membrane function, acetylcholine synthesis, lipid transport, and methyl metabolism. In biological tissues and foods, there are multiple choline compounds that contribute to choline content. There are so many analytical methods for choline determination, such as radioisotopic, high-performance liquid chromatography, and gas chromatography/mass spectrometry. However, these existing methods are expensive, unmanageable, and time-consuming. In this study, we modified enzymatic method, which is applicable for the determination of choline in milk and infant formulas, and applied to bovine serum and muscle. The calibration curves were linear with higher correlation coefficients than 0.994. Recoveries obtained by calibration curves from the spiked bovine serum and muscle samples varied between 70.6 and 85.2%. The method may be suitable for use as a routine method in the determination of choline for biological tissue and food samples.

Classifying Finger Flexing Motions with Surface EMG Using Entropy and The Maximum Likelihood Method (엔트로피 및 최대우도추정법을 이용한 표면 근전도 기반 손가락 동작 인식)

  • You, Kyung-Jin;Shin, Hyun-Chool
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.38-43
    • /
    • 2009
  • We provide a method to infer finger flexing motions using a 4-channel surface electromyogram (sEMG). Surface EMGs are harmless to the human body and easily acquired. However, they do not reflect the activity of specific nerves or muscles, unlike invasive EMGs. On the other hand, the non-invasive type is difficult to use for discriminating various motions while using only a small number of electrodes. Surface EMG data in this study were obtained from four electrodes placed around the forearm. The motions were the flexion of the thumb, index, middle, ring, and little linger. One subject was trained with these motions and another left was untrained. The maximum likelihood estimation was used to infer the finger motion. Experimental results have showed that this method could be useful for recognizing finger motions. The average accuracy was as high as 95%.

Investigation of Growth Stage Related Genes in Dark-banded Rockfish Sebastes inermis (볼락(Sebastes inermis)의 성장단계별 차등발현 유전자 탐색)

  • Jang, Yo-Soon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.21-29
    • /
    • 2011
  • Expression analysis of development-related genes was conducted using differential screening of 6-month-old [18M(-), 6M-18M] specific and 18-month-old [6M(-), 18M-6M] specific subtracted cDNA libraries constructed by subtractive hybridization using skeletal muscle of 6- and 18-month-old dark-banded rockfish Sebastes inermis. A total 202 cDNA clones displaying different expression levels in each stage were obtained; among them, 32 clones showing up-regulation were finally selected for further expression analysis. We sequenced the clones and analyzed individual sequences. Genes expressed specifically in 6-month-old skeletal muscle were identified as myosin, adenylate kinase, calsequestrin, dystrobrevin beta, and diphosphate kinase-Z1. Genes showing strong expression in 18-month-old rockfish were identified as desmin, TGFBR2 (transforming growth factor-beta receptor), muscle-type creatine kinase, and cathepsin D. Expression of these genes was checked further in 6-18-30-42 month-old dark-banded rock fish. Rapid reduction of expression was observed in dystrobrevin beta and diphosphate kinase. However, expression of creatine kinase (muscle type) and cathepsin D increased as dark-banded rockfish grew, and remained even after 18 months. The results reported here demonstrate that genes related to muscles contract are expressed at an early stage of development, and genes controlling energy in muscles are predominantly expressed at a late developmental stage.

Tissue Distribution after dipping administration of Oxytetracycline and Tetracycline in Olive flounder (Paralichthys olivaceus), Rockfish (Sebastes schlegeli), and Red sea bream (Pagrus major) (Oxytetracycline과 Tetracycline의 약욕에 따른 양식어류 (넙치, 조피볼락, 참돔)의 조직내 잔류량의 변화)

  • Lee, Hu-Jang;Kim, Suk;Ha, Ji-Young;Kang, Seok-Jung;Jung, Won-Cheol;Chung, Hee-Sik;Heo, Sung-Hyek;Shin, Yong-Woon;Kim, Kyoung-Won;Kim, Dae-Geun
    • Journal of fish pathology
    • /
    • v.19 no.2
    • /
    • pp.155-164
    • /
    • 2006
  • Tissue distribution and residue depletion of oxytetracycline (OTC) and tetracycline (TC) following dipping administration were evaluated in olive flounder (Paralichthys olivaceus), rockfish (Sebastes schlegeli), and red sea bream (Pagrus major) under field conditions. Fishes were held in floating cages placed in sea water and fed a commercial diet for 15 days to acclimate to a new surrounding. Fishes were dipped in OTC 50 g/ton water for 30min and TC 18 g/ton water for 5 hours. Blood and muscle were sampled from fishes on 0th, 1th, 2th, 3th, and 5th day after administration. After solid-phase extraction, OTC and TC analyses were carried out by HPLC. The recovery rate of OTC in serum and muscle samples was 71-77% and 78-84%, respectively. Also, the recovery rate of TC in serum and muscle samples was 70-79% and 73-78%, respectively. The results of recovery rate were similar to previous studies reported. At the termination of dipping administration of OTC and TC, residue concentration in muscle samples of rockfish was significantly higher than those of olive flounder and red sea bream. At day 5, residue concentrations of all samples were believed to decrease to lower than 0.05 mg/kg, the detection limit. The present study showed that residue concentrations of OTC and TC decreased to below 0.05 mg/kg after treatment 5th day, faster than the established withdrawal period. The tissue reside depletion time of dipping administration of OTC and TC seems to be shorter than those of oral or parenteral administration.

Muscle Tissue Distribution Level after Dipping Administration of Streptomycin in Olive Flounder (Paralichthys olivaceus), Rockfish (Sebastes schlegeli), and Red sea bream (Pagrus major) (Streptomycin의 약욕에 따른 양식 어류(넙치, 조피볼락, 참돔)의 근육조직내 잔류량의 변화)

  • Kim, Suk;Chun, Myung-Sun;Chung, Hee-Sik;Jung, Won-Chul;Kim, Dong-Hyeok;Shon, Ho-Yeong;Min, Won-Gi;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.1
    • /
    • pp.23-28
    • /
    • 2007
  • The residue depletion of streptomycin was investigated in the olive flounder (Paralichthys olivaceus), rockfish (Sebastes schlegeli), and red sea bream (Pagrus major) after consecutive three days treatment with dipping water at a dose of 20 g/ton water. Fishes were sampled for muscle on 1st, 2nd, 3rd, 4th, and 5th day after treatment. Streptomycin concentrations were determined by high performance liquid chromatography with tandem mass spectrometry. The recovery rates of streptomycin in muscle samples ranged from 87.2 to 102.3% and from 80.4 to 94.1% for the concentration of 0.05 mg/kg and 0.1 mg/kg, respectively. Streptomycin concentrations detected on the 1st day after treatment were 0.066, 0.058, and 0.073 mg/kg in muscles of olive flounder, rockfish, and red sea bream, respectively. At day 2, residue concentrations of all samples were believed to decrease to lower than 0.05 mg/kg, the detection limit. From results of the present study, a withdrawal period of streptomycin is proposed on 3 days after consecutive three days treatment with dipping administration at a dose of 20 g/ton water to avoid the presence of excessive residues of the edible muscles of olive flounder, rockfish, and red sea bream. The present study showed that residue concentrations of streptomycin decreased to below 0.05 mg/kg after treatment 2nd day.

Muscle Tissue Distribution Level of Amoxicillin in Olive Flounder (Paralichthys olivaceus), Rockfish (Sebastes schlegeli), and Red Sea Bream (Pagrus major) Following Oral Administration (Amoxacillin의 경구투여에 따른 양식 어류(넙치, 조피볼락, 참돔)의 근육조직내 잔류량의 변화)

  • Chung, Hee-Sik;Kim, Suk;Min, Won-Gi;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.4
    • /
    • pp.244-249
    • /
    • 2006
  • The residue depletion of amoxicillin was investigated in the olive flounder (Paralichthys olivaceus), rockfish (Sebastes schlegeli), and red sea bream (Pagrus major) after 7 days treatment with medicated feed at a dose of 400 mg/kg bw/day. Fishes were sampled for muscle on 1st, 2nd, 3rd, 4th, and 5th day after treatment. Amoxicillin concentrations were determined by high performance liquid chromatography with fluorescence detector. The recovery rates of amoxicillin in muscle samples ranged 84.3-101.3% and 75.0-91.5% for the concentration of 0.05 mg/kg and 0.1 mg/kg, respectively. Amoxicillin concentrations detected on 1st day after treatment were 0.137, 0.131, and 0.172 mg/kg in the muscle of olive flounder, rockfish, and red sea bream, respectively. After a withdrawal of 3 days, muscle concentrations were 0.012, 0.010, and 0.017 mg/kg in the olive flounder, rockfish, and red sea bream, respectively. Amoxicillin was not detectable in muscle samples on 4 days following withdrawal of the medicated feed. From results of the present study, a withdrawal period of amoxicillin is proposed on 4 days after 7 days treatment with medicated feed at a dose of 400 mg/kg bw/day to avoid the presence of excessive residues of the edible muscles of olive flounder, rockfish, and red sea bream.

Microstructural Changes after Intramuscular Injection of Lidocaine and Dexamethasone (Lidocaine과 dexamethasone 혼합용액의 근육내 주사 후 조직학적 변화)

  • Jang, Seong-Min;Lee, Kyong-Eun
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.25-34
    • /
    • 2005
  • A trigger point injection (TPI) has been reported to have an immediate analgesic effect, and to be one of the most widely employed treatment methods of myofascial pain. There are normal saline, local anesthetics, and steroids as the solutions frequently used in TPI. They can be used separately or in combination. Local anaesthetics have myotoxicity in proportion to its concentration. The purpose of this study was to evaluate microstructural changes in point of the myotoxic effects of the combined solution of lidocaine and dexamethasone (a local anesthetic and a steroid) after being injected into the muscle of BALB/c mice. And this study tested solutions with various concentration separately and in combination, to find out proper concentration of solution without muscular tissue damage. This study shows that lidocaine and dexamethasone combination is not histologically myotoxic in case of the concentration of lidocaine less than 1.5%. Also it is suggested from this study that this combined solution will have an analgesic and anti-inflammatory effect. Hereafter continuous study should be performed to reveal that these results can be applied to human when lidocaine and dexamethasone combination is used as an injection modality of TrP treatment.

Muscular Condition Monitoring System Using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 근육 상태 감시 시스템)

  • Kim, Heon-Young;Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.362-368
    • /
    • 2014
  • Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the musle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.