• Title/Summary/Keyword: 근사 기법

Search Result 1,035, Processing Time 0.027 seconds

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

A Centralized Deployment Protocol with Sufficient Coverage and Connectivity Guarantee for WSNs (무선 센서 네트워크에서 유효 커버리지 및 접속성 보장을 위한 중앙 집중형 배치 프로토콜)

  • Kim, Hyun-Tae;Zhang, Gui-Ping;Kim, Hyoung-Jin;Joo, Young-Hoon;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.683-690
    • /
    • 2006
  • Reducing power consumption to extend network lifetime is one of the most important challenges in designing wireless sensor networks. One promising approach to conserving system energy is to keep only a minimal number of sensors active and put others into low-powered sleep mode, while the active sensors can maintain a connected covet set for the target area. The problem of computing such minimum working sensor set is NP-hard. In this paper, a centralized Voronoi tessellation (CVT) based approximate algorithm is proposed to construct the near optimal cover set. When sensor's communication radius is at least twice of its sensing radius, the covet set is connected at the same time; In case of sensor's communication radius is smaller than twice of its sensing radius, a connection scheme is proposed to calculate the assistant nodes needed for constructing the connectivity of the cover set. Finally, the performance of the proposed algorithm is evaluated through theoretical analysis and extensive numerical experiments. Experimental results show that the proposed algorithm outperforms the greedy algorithm in terms of the runtime and the size of the constructed connected cover set.

Application Examples of Daecheong Dam for Efficient Water Management Based on Integrated Water Management (통합물관리 기반 효율적 물관리를 위한 대청댐 실무적용 사례)

  • Kang, Kwon-Su;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.85-85
    • /
    • 2017
  • 효율적 물관리란 거대한 물순환 과정에서 인간이 편안한 삶을 사는데 필요한 물의 이용효율을 극대화하는 것이다. 과거의 물관리는 이원화된 수량과 수질관리, 수량중심에서는 용수공급과 홍수조절이 주요한 관심사였다. 현재는 과거의 물관리에 친수와 환경을 더한 복잡한 분야로 확대되고 있다. 통합물관리란 물을 최적으로 관리하기 위해 물관리 이해당사자간의 소통과 물 기술의 고도화를 기반으로 기존에 분산된 물관리 구성요소들(시설 정보, 수량 수질 등)을 권역적으로 관리하는 것을 말한다. 본 연구에서는 대청댐 방류에 따른 금강 하류부의 홍수추적을 위해 수행한 댐하류 소유역별 강우량 빈도분석 과정, 용담댐 방류를 고려한 대청댐 홍수도달시간 검토, Poincare Section과 신경망기법을 이용한 수문자료 예측, 추계학적 다변량 해석과 다변량 신경망해석에 의한 대청댐 유입량 산정과정, 보조여수로 건설에 따른 주여수로와 보조여수로간의 연계운영방안, 단계(관심, 주의, 경계, 심각)를 고려한 대청댐 확보수위 산정, 저수지 중장기 운영계획 수립과 댐 운영 기준수위를 결정하기 위해 누가차분방식으로 적용되는 갈수기 유입량 빈도분석에 대한 실무적용 사례를 소개하고자 한다. 강우량 빈도분석 과정은 L-모멘트방법(Hosking과 Wallis, 1993)을 적용하였고, 홍수도달시간 검토는 평균유속, 하류 수위상승 기점 영향검토, 수리학적 모형(FLDWAV, Progressive lag method 등)을 활용하였다. 카오스 이론을 도입하여 대청댐 수문자료의 상관성 검토 및 추계학적 모형을 이용한 모의발생을 유도하여 수문자료 예측을 시행하였다. 추계학적 모형과 신경망모형 연구의 대상은 대청댐으로, 시계열 자료는 댐의 월강우량, 월유입량, 최고기온, 평균기온, 최소기온, 습도, 증발량 등의 자료를 기반으로 하였다. 적용기간은 1981~2009년의 자료를 이용하여 2010년 1월부터 12월까지 12개월 동안의 월유입량을 예측하였다. 수문자료 해석의 기본이 되는 약 30년간의 자료를 이용하여 분석을 실시하였다. 대청댐의 유입량 예측을 위해 적용된 모형으로는 추계학적 모형인 ARMA모형, TF모형, TFN 모형 등이 적용되었고, 또한 신경망 모형의 종류인 다층 퍼셉트론, PCA모형 등을 활용하여 실측치와 가장 가깝게 근사화시키는 방법론을 찾고자 하였다. 또한, 기존여수로와 보조여수로 연계운영을 위해 3차원 수치해석을 통한 댐하류 안정성 검토 및 확보수위 산정을 통해 단계(관심, 주의, 경계, 심각)별로 대처가 가능한 수위를 산정하였다.

  • PDF

Curvature Linear Equation of a Two-Mirror System with a Finite Object Distance (유한 물체 거리를 갖는 2 반사경계의 곡률 선형 방정식)

  • Lee, Jung-Gee;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.423-427
    • /
    • 2005
  • In this paper, we propose easily tooling method for Seidel third order aberration, which are not well utilized in actual design process due to the complication of mathematical operation and the difficulty of understanding Seidel third order aberration theory, even though most insightful and systematic means in pre-designing for the initial data of optimization. First, using paraxial ray tracing and Seidel third order aberration theory, spherical aberration coefficient is derived for a two-mirror system with a finite object distance. The coefficient, which is expressed as a higher-order nonlinear equation, consists of design parameters(object distance, two curvatures, and inter-mirror distance) and effective focal length(EFL). Then, the expressed analytical equation is solved by using a computer with numerical analysis method. From the obtained numerical solutions satisfying the nearly zero coefficient condition($<10^{-6}$), linear fitting process offers a linear relationship called the curvature linear equation between two mirrors. Consequently, this linear equation has two worthy meanings: the equation gives a possibility to obtain initial design data for optimization easily. And the equation shows linear relationship to a two-mirror system with a finite object distance under the condition of corrected third order spherical aberration.

Methodological Improvement of the Cumulative Risk Assessment of Health Impact Assessment in Environmental Impact Assessment - Focused on the Industrial Complex Development Projects in the Last Decade - (환경영향평가서 내 건강영향평가의 누적위해성평가 방법론적 개선 - 과거 10년 국내 산업단지 개발 사례를 중심으로 -)

  • Kim, Eunchae;Ha, Jongsik
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.6
    • /
    • pp.413-424
    • /
    • 2021
  • Health impact assessment in the environmental impact assessment is conducted to determine whether to exceed the standard of each single substance and to establish appropriate reduction measures. In some development projects, although all substances in risk assessment meet the standard, exposure concentration is very close to it. However, considering the cumulative exposure of all substances, health effects are likely to occur considerably severer than those of individual substances, so it is necessary to prepare a concrete and improved methodology for integrating evaluation of emissions to identify the health effects actually exposed to receptors of living things. This study established the definition of cumulative risk assessment through overseas advanced cases and domestic and foreign literature reviews, and proposed a methodology for utilizing cumulative risk assessment considering health effects on multiple substances when developing industrial complexes. Applied by the proposed methodology, integrated indicators forfourtypes of hazardous heavy metals (Ni, Cr6+, Cd, As) emitted from industrial complexes were calculated, and applicability was tested with case of the industrial complex development projects conducted over the last decade (2011-2020).

Development of Snow Depth Frequency Analysis Model Based on A Generalized Mixture Distribution with Threshold (최심신적설량 빈도분석을 위한 임계값을 가지는 일반화된 혼합분포모형 개발)

  • Kim, Ho Jun;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.25-36
    • /
    • 2020
  • An increasing frequency and intensity of natural disasters have been observed due to climate change. To better prepare for these, the MOIS (ministry of the interior and safety) announced a comprehensive plan for minimizing damages associated with natural disasters, including drought and heavy snowfall. The spatial-temporal pattern of snowfall is greatly influenced by temperature and geographical features. Heavy snowfalls are often observed in Gangwon-do, surrounded by mountains, whereas less snowfall is dominant in the southern part of the country due to relatively high temperatures. Thus, snow depth data often contains zeros that can lead to difficulties in the selection of probability distribution and estimation of the parameters. A generalized mixture distribution approach to a maximum snow depth series over the southern part of Korea (i.e., Changwon, Tongyeoung, Jinju weather stations) are located is proposed to better estimate a threshold (𝛿) classifying discrete and continuous distribution parts. The model parameters, including the threshold in the mixture model, are effectively estimated within a Bayesian modeling framework, and the uncertainty associated with the parameters is also provided. Comparing to the Daegwallyeong weather station, It was found that the proposed model is more effective for the regions in which less snow depth is observed.

A Study on the Evaluation of Cargo Securing Safety for Car ferry Ships Using Wave Height Information (해상 파고 정보를 활용한 카페리 선박의 고박안전성 평가에 관한 연구)

  • Yu, Yong-Ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.457-464
    • /
    • 2021
  • Cargo securing safety, which is one factor for the safe operation of car ferry ships, has been applied since 2015 and evaluated by comparing the hull motion and securing load capacity generated by waves. To ensure the safe operation of the 3700 ton class car ferry, it is important to analyze the hull acceleration motion based on the sea wave information of the navigation area to determine the cargo securing load that can prevent the movement of cargo. In this study, the meteorological information of three wave buoys installed in Busan and Jeju area was analyzed for the past 5 years. In addition, the hull acceleration was measured in actual sea conditions and compared to that of numerical simulations. Under the condition of a significant wave height of 2.5 m from Feb to Mar, except typhoon seasons, the lateral acceleration was observed to be 1.5 m/s2 in real ship measuring and 1.8 m/s2 in numerical calculation. It was analyzed to be less than 40% under general weather conditions compared to the high wave warning using an approximate formula for estimating the hull motion by wave height. The cargo securing safety proposed in this study will be widely used based on the actual measuring acceleration with the sea wave height.

Ensemble trading algorithm Using Dirichlet distribution-based model contribution prediction (디리클레 분포 기반 모델 기여도 예측을 이용한 앙상블 트레이딩 알고리즘)

  • Jeong, Jae Yong;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.9-17
    • /
    • 2022
  • Algorithmic trading, which uses algorithms to trade financial products, has a problem in that the results are not stable due to many factors in the market. To alleviate this problem, ensemble techniques that combine trading algorithms have been proposed. However, there are several problems with this ensemble method. First, the trading algorithm may not be selected so as to satisfy the minimum performance requirement (more than random) of the algorithm included in the ensemble, which is a necessary requirement of the ensemble. Second, there is no guarantee that an ensemble model that performed well in the past will perform well in the future. In order to solve these problems, a method for selecting trading algorithms included in the ensemble model is proposed as follows. Based on past data, we measure the contribution of the trading algorithms included in the ensemble models with high performance. However, for contributions based only on this historical data, since there are not enough past data and the uncertainty of the past data is not reflected, the contribution distribution is approximated using the Dirichlet distribution, and the contribution values are sampled from the contribution distribution to reflect the uncertainty. Based on the contribution distribution of the trading algorithm obtained from the past data, the Transformer is trained to predict the future contribution. Trading algorithms with high predicted future contribution are selected and included in the ensemble model. Through experiments, it was proved that the proposed ensemble method showed superior performance compared to the existing ensemble methods.

Acceleration of computation speed for elastic wave simulation using a Graphic Processing Unit (그래픽 프로세서를 이용한 탄성파 수치모사의 계산속도 향상)

  • Nakata, Norimitsu;Tsuji, Takeshi;Matsuoka, Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.98-104
    • /
    • 2011
  • Numerical simulation in exploration geophysics provides important insights into subsurface wave propagation phenomena. Although elastic wave simulations take longer to compute than acoustic simulations, an elastic simulator can construct more realistic wavefields including shear components. Therefore, it is suitable for exploration of the responses of elastic bodies. To overcome the long duration of the calculations, we use a Graphic Processing Unit (GPU) to accelerate the elastic wave simulation. Because a GPU has many processors and a wide memory bandwidth, we can use it in a parallelised computing architecture. The GPU board used in this study is an NVIDIA Tesla C1060, which has 240 processors and a 102 GB/s memory bandwidth. Despite the availability of a parallel computing architecture (CUDA), developed by NVIDIA, we must optimise the usage of the different types of memory on the GPU device, and the sequence of calculations, to obtain a significant speedup of the computation. In this study, we simulate two- (2D) and threedimensional (3D) elastic wave propagation using the Finite-Difference Time-Domain (FDTD) method on GPUs. In the wave propagation simulation, we adopt the staggered-grid method, which is one of the conventional FD schemes, since this method can achieve sufficient accuracy for use in numerical modelling in geophysics. Our simulator optimises the usage of memory on the GPU device to reduce data access times, and uses faster memory as much as possible. This is a key factor in GPU computing. By using one GPU device and optimising its memory usage, we improved the computation time by more than 14 times in the 2D simulation, and over six times in the 3D simulation, compared with one CPU. Furthermore, by using three GPUs, we succeeded in accelerating the 3D simulation 10 times.

A Study on the Ordering Status of Traditional Landscape Design Service in Cultural Heritage (문화재의 전통조경설계용역 발주실태 연구)

  • Kim, Min-Seon;Kim, Choong-Sik;Lee, Jae-Yong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.3
    • /
    • pp.33-41
    • /
    • 2021
  • This study identified the scale that traditional landscape design has taken up by analyzing a total of 1037 services for design of cultural heritage that had been ordered by the government agencies from 2018 to 2020, and has drawn characteristics of traditional landscape design focusing on major cases. The results are as follows. First, the number of order cases for traditional landscape design has shown differences annually in the services of design of cultural heritage, but the design amount has been found to have the similar average annually, which confirmed that the same level has been maintained each year. It was found that the number of cases of traditional landscape design requiring responsibilities or participations of landscape engineers for 3 years in the entire design had a high proportion of approximately 26%. Second, the traditional landscape design has required professional knowledge and experiences of landscape engineers that could not be replaced by the business operator for design of cultural heritage consisting of architects. The expertise has been shown differently depending on types of construction. First, the topographical design for the work to build a foundation has required understanding of ground shapes and its elevations and professional knowledge on calculation of the amount of the earth work and the remains maintenance technique etc. The plantation design has required basic knowledge on growth characteristics of trees and the environment for growth and understanding of the vegetation landscape of the past. Meanwhile, the design for traditional pavement and traditional landscape structures and facilities has required the expertise on traditional materials that are different from the modern ones and their processing and construction methods. The understanding of changes to water paths and ecosystem, the principles of fluids, and characteristics of each type of fluid was essential for the design for the ecological landscape work including the maintenance of a water system such as rivers etc. As such, the traditional landscape design has a scale accounting for approximately one fourth of the entire cultural heritage design and requires the expertise differentiated from other fields. This improves the provisions of the current law on limiting the actual design, suggesting the need for the establishment of a traditional landscape design company so that all traditional landscape designs can be carried out by landscape engineers.