• Title/Summary/Keyword: 근사 공식

Search Result 76, Processing Time 0.025 seconds

Low-Frequency Normal Mode Reverberation Model (저주파수 정상모드 잔향음 모델)

  • Oh, Suntaek;Cho, Sungho;Kang, Donhyug;Park, Kyoungju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.184-191
    • /
    • 2015
  • In this paper, a normal mode reverberation model for a range-independent environment of shallow water is proposed to calculate the reverberation level in the low-frequency range. Normal mode is used to calculate the acoustic energy propagating from the source to the scattering area and from the scattering area to the receiver. Each mode is decomposed into up and down going waves to consider scattering strength at the scattering area. The scattering functional form combines Lambert's law with a Gaussian-like term near the specular direction based on Kirchhoff approximation considering bottom condition. For verification of the suggested model, the result is relatively compared to several solutions of the problem XI and XV in the Reverberation Modeling Workshop I sponsored by the US Office of Naval Research.

Deriving the Fourier Transforms of Pulse Signals Through the Look-up Tables (찾아보기 목록에 의한 고차 펄스의 푸리에 변환법)

  • 오용선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.327-338
    • /
    • 1993
  • This paper proposes a novel method for deriving the Fourier transform pairs of high order pulses given in a generalized form. Primarily, modifying the PRS system model, we establish a new model which simplifies the process of Fourier analysis of the n-th order pulse signal, resulting in a representative relationship. In succession, we present the Frame Formula which plays a role of substituent for the parameters in table look-up procedures. Each look-up table contains all the parameters needed to obtain the Fourier transform of the corresponding pulse of any order. Regarding the amount of calculations and the complexity of procedures required to derive the transforms of pulse signals, analytically or numerically, this method is more compact and timesaving than conventional methods. When pulse has a much narrow width of equivalently higher the order of several pulses, the method presented here acts to the best of its true merit.

  • PDF

Minimum number of Vertex Guards Algorithm for Art Gallery Problem (화랑 문제의 최소 정점 경비원 수 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.179-186
    • /
    • 2011
  • This paper suggests the minimum number of vertex guards algorithm. Given n rooms, the exact number of minimum vertex guards is proposed. However, only approximation algorithms are presented about the maximum number of vertex guards for polygon and orthogonal polygon without or with holes. Fisk suggests the maximum number of vertex guards for polygon with n vertices as follows. Firstly, you can triangulate with n-2 triangles. Secondly, 3-chromatic vertex coloring of every triangulation of a polygon. Thirdly, place guards at the vertices which have the minority color. This paper presents the minimum number of vertex guards using dominating set. Firstly, you can obtain the visibility graph which is connected all edges if two vertices can be visible each other. Secondly, you can obtain dominating set from visibility graph or visibility matrix. This algorithm applies various art galley problems. As a results, the proposed algorithm is simple and can be obtain the minimum number of vertex guards.

Estimation of Rivers Discharge by Probabilistic Velocity Function Considering Hydraulic Characteristics (하천 수리특성을 고려한 확률론적 유속공식에 의한 하천유량 산정)

  • Choo, Tai Ho;Lee, Sang Jin;Park, Sang Woo;Oh, Ryun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.537-542
    • /
    • 2009
  • To improve stage-discharge curve equation considering water level's function, this study suggested the method that can efficiently compute rivers discharge based on hydraulic characteristics such as river width, area, channel bed slope and entropy concept adopting probabilistic approach. This scheme is proposed to estimate discharge from the velocity formulation based on the entropy function in the equilibrium state derived from the relation between mean and maximum flow velocity. It has been tested using field and laboratory hydraulic data collected from the Alberta university in Canada. As a result it was found that the method proposed in this study was more efficient and accurate comparing with the traditional stage-discharge curve equation.

An Approximate Estimation of Snow Weight Using KMA Weather Station Data and Snow Density Formulae (기상청 관측 자료와 눈 밀도 공식을 이용한 적설하중의 근사 추정)

  • Jo, Ji-yeong;Lee, Seung-Jae;Choi, Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.92-101
    • /
    • 2020
  • To prevent and mitigate damage to farms due to heavy snowfall, snow weight information should be provided in addition to snow depth. This study reviews four formulae regarding snow density and weight used in extant studies and applies them in Suwon area to estimate snow weight in Korea. We investigated the observed snow depth of 94 meteorological stations and automatic weather stations (AWS) data over the past 30 years (1988-2017). Based on the spatial distribution of snow depth by area in Korea, much of the fresh snow cover, due to heavy snowfall, occurred in Jeollabuk-do and Gangwon-do. Record snowfalls occurred in Gyeongsangbuk-do and Gangwon-do. However, the most recent heavy snowfall in winter occurred in Gyeonggi-do, Gyeongsangbuk-do, and Jeollanam-do. This implies that even if the snow depth is high, there is no significant damage unless the snow weight is high. The estimation of snow weight in Suwon area yielded different results based on the calculation method of snow density. In general, high snow depth is associated with heavy snow weight. However, maximum snow weight and maximum snow depth do not necessarily occur on the same day. The result of this study can be utilized to estimate the snow weight at other locations in Korea and to carry out snow weight prediction based on a numerical model. Snow weight information is expected to aid in establishing standards for greenhouse design and to reduce the economic losses incurred by farms.

Finite Element Analysis to Predict Design Loads of Circular Foundation (원형기초의 설계하중 예측을 위한 유안요소해석)

  • 김성득;김미룡
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.19-26
    • /
    • 1989
  • In this study, the finite element method for nonlinear problems is developed theroretically to see the design loads of foundation, when the circular plate resting on elasto-viscoplastic soil medium is loaded axisymmetrically. The paper shows that the plastic zone of soil medium is displayed at the near the edge of plate at the first place; when the plastic zone of soil medium is linked around central axis, the external load is termed by allowable load or design load, and then the contact pressure changes abruptly, in this case it is approved to be the risk of shear failure. The results of numerical analysis using the Mohr-Coulomb yield criterion, and experimental analysis for a appropriate safety factor are approximative, but numerical results are smaller than the value based on Terzaghi's theory.

  • PDF

Time-domain Finite Element Formulation for Linear Viscoelastic Analysis Based on a Hereditary Type Constitutive Law (유전적분형 물성방정식에 근거한 선형 점탄성문제의 시간영역 유한요소해석)

  • 심우진;이호섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1429-1437
    • /
    • 1992
  • A new finite element formulation based on the relaxation type hereditary integral is presented for a time-domain analysis of isotropic, linear viscoelastic problems. The semi-discrete variational approximation and elastic-viscoelastic correspondence principle are used in the theoretical development of the proposed method. In a time-stepping procedure of final, linear algebraic system equations, only a small additional computation for past history is required since the equivalent stiffness matrix is constant. The viscoelasticity matrices are derived and the stress computation algorithm is given in matrix form. The effect of time increment and Gauss point numbers on the numerical accuracy is examined. Two dimensional numerical examples of plane strain and plane stress are solved and compared with the analytical solutions to demonstrate the versatility and accuracy of the present method.

Exact solver of Saint-Venant system with discontinuous geometry (불연속 지형조건에 대한 Saint-Venant 방정식의 정해법)

  • Jung, Jaeyoung;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.256-256
    • /
    • 2021
  • Saint-Venant 방정식은 수평규모가 수심규모보다 큰 천수흐름을 기술하는 수리동역학 모형으로 지난 수십년간 공학적 분야에서 널리 이용되어 왔다. 최근에도 기후변화에 따른 도시 홍수의 위기 증대로 홍수위기관리의 관심이 높아짐에 따라 홍수파(flood wave), 도시침수(urban inundation), 돌발홍수(flash flood) 등의 신속한 예측을 위한 Saint-Venant 방정식의 연구가 활발히 진행되고 있다. 그러나 도시와 같은 인공구조물이 즐비한 상황에서 천수흐름을 해석하는 고전적인 수치해법들은 다양한 불연속 지형들의 존재로 인하여 불안정하며 지배방정식의 정해로 수치해가 잘 수렴하지 않는 문제가 있다. 지난 수년간 이를 해결하기 위해 불연속한 지형을 안정적으로 해결할 수 있는 수치기법의 연구가 진행되어 왔으나, 정해로의 수렴성, 정확성에 관하여 연구가 부족한 실정이다. 본 연구는 수치해법의 주요 구조를 구성하는 Saint-Venant 방정식의 불연속한 지형조건에 대한 리만 문제의 정해를 연구하였다. 쌍곡선형 시스템의 특징을 고려하여 요소파들(elementary waves)의 공식을 유도하였는데, 질량과 에너지의 보존법칙에 위배되지 않으며 운동량이송부의 비선형성과 지형의 불연속에 의한 비엄격성을 고려할 수 있는 조건을 제시하였다. 또한, 유도된 요소파들을 바탕으로 L-M & R-M 커브이론(Han et al. 2014)을 사용할 수 있는 조건과 당위성을 증명하였고, 이를 바탕으로 Saint-Venant 방정식의 정해법을 구성하였다. 리만문제의 다양한 초기조건들을 바탕으로 모든 경우의 정해 구조를 조사하였고, 이를 통해 불연속 지형에 대한 Saint-Venant 지배방정식의 정해가 다수해를 갖을 수 있음을 보였으며, 이를 근사할 수 있는 수치기법의 전략을 소개하였다.

  • PDF

Sound transmission of multi-layered micro-perforated plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 다중 미세천공 판의 음향투과)

  • Kim, Hyun-Sil;Ma, Pyung-Sik;Kim, Bong-Ki;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.270-278
    • /
    • 2020
  • In this paper, sound transmission of Micro-Perforated Plates (MPPs) installed in an impedance tube with a circular cross-section is described using an analytic method. Vibration of the plates is expressed in terms of an infinite series of modal functions, where modal function in the radial direction is given by the Bessel function. Under the plane wave assumption, a low frequency approximation is derived, and a formula for the sound transmission coefficient of multi-layered MPPs is presented using the transfer matrix method. The Sound Transmission Losses (STLs) of single and double MPPs are computed using the proposed method and compared with those done by the Finite Element Method (FEM), which shows an excellent agreement. As the perforation increases, the STL is degraded, since the STL becomes dominated by the perforation ratio rather than by vibration of the plate. The STL shows dips at natural frequencies as well as at the mass-spring-mass resonance frequency. The proposed model for the STL prediction in this study can be applied to an arbitrary number of MPPs, where each MPP may or may not have a perforation.

Calculation of Roughness Coefficient in Gravel-bed River with Observed Water Levels (실측 수위에 의한 자갈하천의 조도계수 산정)

  • Kim, Ji-Sung;Lee, Chan-Joo;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.755-768
    • /
    • 2007
  • The purpose of this study is to analyse the characteristics of Manning's roughness coefficient according to change of discharge by using observed data obtained from a stable gravel-bed river and to investigate the applicability of the relevant existing empirical methods to it. Observed water level and discharge data are used as input data for the USGS computer program NCALC model for calculation of the roughness coefficient. Calculated values are compared with roughness values which are estimated with four widely used methods. The results show that though the empirical methods are able to give similar roughness values only for flood flow, they seem to have rather high uncertainty because of necessity of subjective judgement and differences of resultant values. Roughness coefficients for normal-low flow cannot be estimated from the existing empirical formulae. Especially, using the Manning equation for calculating them should be careful as this provides a wide range of estimated values in normal-low flow. The relations between the roughness coefficient and characteristic size of bed materials are different from them in flood flow even though they have a close relations.