• Title/Summary/Keyword: 근사화 기법

Search Result 368, Processing Time 0.022 seconds

A Study on the Training Optimization Using Genetic Algorithm -In case of Statistical Classification considering Normal Distribution- (유전자 알고리즘을 이용한 트레이닝 최적화 기법 연구 - 정규분포를 고려한 통계적 영상분류의 경우 -)

  • 어양담;조봉환;이용웅;김용일
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.195-208
    • /
    • 1999
  • In the classification of satellite images, the representative of training of classes is very important factor that affects the classification accuracy. Hence, in order to improve the classification accuracy, it is required to optimize pre-classification stage which determines classification parameters rather than to develop classifiers alone. In this study, the normality of training are calculated at the preclassification stage using SPOT XS and LANDSAT TM. A correlation coefficient of multivariate Q-Q plot with 5% significance level and a variance of initial training are considered as an object function of genetic algorithm in the training normalization process. As a result of normalization of training using the genetic algorithm, it was proved that, for the study area, the mean and variance of each class shifted to the population, and the result showed the possibility of prediction of the distribution of each class.

Decoupled Parametric Motion Synthesis Based on Blending (상.하체 분리 매개화를 통한 블렌딩 기반의 모션 합성)

  • Ha, Dong-Wook;Han, Jung-Hyun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.439-444
    • /
    • 2008
  • The techniques, which locate example motions in abstract parameter space and interpolate them to generate new motion with given parameters, are widely used in real-time animation system for its controllability and efficiency However, as the dimension of parameter space increases for more complex control, the number of example motions for parameterization increases exponentially. This paper proposes a method that uses two different parameter spaces to obtain decoupled control over upper-body and lower-body motion. At each frame time, each parameterized motion space produces a source frame, which satisfies the constraints involving the corresponding body part. Then, the target frame is synthesized by splicing the upper body of one source frame onto the lower body of the other. To generate corresponding source frames to each other, we present a novel scheme for time-warping. This decoupled parameterization alleviates the problems caused by dimensional complexity of the parameter space and provides users with layered control over the character. However, when the examples are parameterized based on their upper body's spatial properties, the parameters of the examples are varied individually with every change of its lower body. To handle this, we provide an approximation technique to change the positions of the examples rapidly in the parameter space.

  • PDF

Photorealistic Building Modelling and Visualization in 3D GIS (3차원 GIS의 현실감 부여 빌딩 모델링 및 시각화에 관한 연구)

  • Song, Yong Hak;Sohn, Hong Gyoo;Yun, Kong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.311-316
    • /
    • 2006
  • Despite geospatial information systems are widely used in many different fields as a powerful tool for spatial analysis and decision-making, their capabilities to handle realistic 3-D urban environment are very limited. The objective of this work is to integrate the recent developments in 3-D modeling and visualization into GIS to enhance its 3-D capabilities. To achieve a photorealistic view, building models are collected from a pair of aerial stereo images. Roof and wall textures are respectively obtained from ortho-rectified aerial image and ground photography. This study is implemented by using ArcGIS as the work platform and ArcObjects and Visual Basic as development tools. Presented in this paper are 3-D geometric modeling and its data structure, texture creation and its association with the geometric model. As the results, photorealistic views of Purdue University campus are created and rendered with ArcScene.

Model-Based Plane Detection in Disparity Space Using Surface Partitioning (표면분할을 이용한 시차공간상에서의 모델 기반 평면검출)

  • Ha, Hong-joon;Lee, Chang-hun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.10
    • /
    • pp.465-472
    • /
    • 2015
  • We propose a novel plane detection in disparity space and evaluate its performance. Our method simplifies and makes scenes in disparity space easily dealt with by approximating various surfaces as planes. Moreover, the approximated planes can be represented in the same size as in the real world, and can be employed for obstacle detection and camera pose estimation. Using a stereo matching technique, our method first creates a disparity image which consists of binocular disparity values at xy-coordinates in the image. Slants of disparity values are estimated by exploiting a line simplification algorithm which allows our method to reflect global changes against x or y axis. According to pairs of x and y slants, we label the disparity image. 4-connected disparities with the same label are grouped, on which least squared model estimates plane parameters. N plane models with the largest group of disparity values which satisfy their plane parameters are chosen. We quantitatively and qualitatively evaluate our plane detection. The result shows 97.9%와 86.6% of quality in our experiment respectively on cones and cylinders. Proposed method excellently extracts planes from Middlebury and KITTI dataset which are typically used for evaluation of stereo matching algorithms.

Normalization of Face Images Subject to Directional Illumination using Linear Model (선형모델을 이용한 방향성 조명하의 얼굴영상 정규화)

  • 고재필;김은주;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.54-60
    • /
    • 2004
  • Face recognition is one of the problems to be solved by appearance based matching technique. However, the appearance of face image is very sensitive to variation in illumination. One of the easiest ways for better performance is to collect more training samples acquired under variable lightings but it is not practical in real world. ]:n object recognition, it is desirable to focus on feature extraction or normalization technique rather than focus on classifier. This paper presents a simple approach to normalization of faces subject to directional illumination. This is one of the significant issues that cause error in the face recognition process. The proposed method, ICR(illumination Compensation based on Multiple Linear Regression), is to find the plane that best fits the intensity distribution of the face image using the multiple linear regression, then use this plane to normalize the face image. The advantages of our method are simple and practical. The planar approximation of a face image is mathematically defined by the simple linear model. We provide experimental results to demonstrate the performance of the proposed ICR method on public face databases and our database. The experimental results show a significant improvement of the recognition accuracy.

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF

Direct Reconstruction of Displaced Subdivision Mesh from Unorganized 3D Points (연결정보가 없는 3차원 점으로부터 차이분할메쉬 직접 복원)

  • Jung, Won-Ki;Kim, Chang-Heon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.6
    • /
    • pp.307-317
    • /
    • 2002
  • In this paper we propose a new mesh reconstruction scheme that produces a displaced subdivision surface directly from unorganized points. The displaced subdivision surface is a new mesh representation that defines a detailed mesh with a displacement map over a smooth domain surface, but original displaced subdivision surface algorithm needs an explicit polygonal mesh since it is not a mesh reconstruction algorithm but a mesh conversion (remeshing) algorithm. The main idea of our approach is that we sample surface detail from unorganized points without any topological information. For this, we predict a virtual triangular face from unorganized points for each sampling ray from a parameteric domain surface. Direct displaced subdivision surface reconstruction from unorganized points has much importance since the output of this algorithm has several important properties: It has compact mesh representation since most vertices can be represented by only a scalar value. Underlying structure of it is piecewise regular so it ran be easily transformed into a multiresolution mesh. Smoothness after mesh deformation is automatically preserved. We avoid time-consuming global energy optimization by employing the input data dependant mesh smoothing, so we can get a good quality displaced subdivision surface quickly.

On Parameterizing of Human Expression Using ICA (독립 요소 분석을 이용한 얼굴 표정의 매개변수화)

  • Song, Ji-Hey;Shin, Hyun-Joon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • In this paper, a novel framework that synthesizes and clones facial expression in parameter spaces is presented. To overcome the difficulties in manipulating face geometry models with high degrees of freedom, many parameterization methods have been introduced. In this paper, a data-driven parameterization method is proposed that represents a variety of expressions with a small set of fundamental independent movements based on the ICA technique. The face deformation due to the parameters is also learned from the data to capture the nonlinearity of facial movements. With this parameterization, one can control the expression of an animated character's face by the parameters. By separating the parameterization and the deformation learning process, we believe that we can adopt this framework for a variety applications including expression synthesis and cloning. The experimental result demonstrates the efficient production of realistic expressions using the proposed method.

  • PDF

Efficient Analysis of Building Structures with a Rigid Floor System (주상복합건물의 효율적인 지진해석)

  • 황현식;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.79-88
    • /
    • 1997
  • Very stiff floor system in a residential-commercial building causes some problems in the numerical analysis procedure due to significant difference in stiffness with adjacent elements. Static analysis of structure with a stiff transfer-floor can be performed approximately in two steps for upper and lower parts for the structure. However, it is impossible to perform dynamic analysis in two steps with separate models. An efficient method for dynamic analysis of a structure with a right floor system is proposd in this study. The matrix condensation technique is employed to reduce the degree of freedom for upper and lower parts of the structure and a beam elements with rigid bodies at both ends are introduce to model the rigid floor system. Efficiency and accuracy of the proposed method are verified through analysis of several example structures.

  • PDF

Gas Flow through Arrays of Spheres Coated by Liquid Film (액체 막이 입혀진 구 입자 배열을 지나는 기체 흐름)

  • Koo, Sangkyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.646-652
    • /
    • 2009
  • Present study deals with a three phase flow problem of determining drag acting on spheres wetted by liquid flow by gas flow through the spheres in simple cubic (SC), body-center cubic (BCC) and face-centered cubic (FCC) array, respectively, when the inertia of gas is negligibly small. The liquid flow driven by gravity on the spheres is assumed to be unaffected by the countercurrent gas flow. A perturbation method coupled with a multipole expansion method is used to calculate the hydrodynamic interactions between spheres and hence determine the effect of liquid film and flow on the gas flow for each periodic array of spheres. An approximate method for evaluating the effect of the liquid film is also presented for simple estimations. It is found that the approximation results are in a reasonable agreement with the numerical calculations.