• Title/Summary/Keyword: 근사최적화

Search Result 405, Processing Time 0.027 seconds

An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation of Learning and Evolution (학습과 진화의 Lamarckian 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계)

  • 김대진;이한별;강대성
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.85-98
    • /
    • 1998
  • This paper proposes a new design method of neuro-FLC by the Lamarckian co-adaptation scheme that incorporates the backpropagation learning into the GA evolution in an attempt to find optimal design parameters (fuzzy rule base and membership functions) of application-specific FLC. The design parameters are determined by evolution and learning in a way that the evolution performs the global search and makes inter-FLC parameter adjustments in order to obtain both the optimal rule base having high covering value and small number of useful fuzzy rules and the optimal membership functions having small approximation error and good control performance while the learning performs the local search and makes intra-FLC parameter adjustments by interacting each FLC with its environment. The proposed co-adaptive design method produces better approximation ability because it includes the backpropagation learning in every generation of GA evolution, shows better control performance because the used COG defuzzifier computes the crisp value accurately, and requires small workspace because the optimization procedure of fuzzy rule base and membership functions is performed concurrently by an integrated fitness function on the same fuzzy partition. Simulation results show that the Lamarckian co-adapted FLC produces the most superior one among the differently generated FLCs in all aspects such as the number of fuzzy rules, the approximation ability, and the control performance.

  • PDF

Fast Bayesian Inversion of Geophysical Data (지구물리 자료의 고속 베이지안 역산)

  • Oh, Seok-Hoon;Kwon, Byung-Doo;Nam, Jae-Cheol;Kee, Duk-Kee
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.161-174
    • /
    • 2000
  • Bayesian inversion is a stable approach to infer the subsurface structure with the limited data from geophysical explorations. In geophysical inverse process, due to the finite and discrete characteristics of field data and modeling process, some uncertainties are inherent and therefore probabilistic approach to the geophysical inversion is required. Bayesian framework provides theoretical base for the confidency and uncertainty analysis for the inference. However, most of the Bayesian inversion require the integration process of high dimension, so massive calculations like a Monte Carlo integration is demanded to solve it. This method, though, seemed suitable to apply to the geophysical problems which have the characteristics of highly non-linearity, we are faced to meet the promptness and convenience in field process. In this study, by the Gaussian approximation for the observed data and a priori information, fast Bayesian inversion scheme is developed and applied to the model problem with electric well logging and dipole-dipole resistivity data. Each covariance matrices are induced by geostatistical method and optimization technique resulted in maximum a posteriori information. Especially a priori information is evaluated by the cross-validation technique. And the uncertainty analysis was performed to interpret the resistivity structure by simulation of a posteriori covariance matrix.

  • PDF

Reproducibility of non-invasive measurement for left ventricular contractility using gated myocardial SPECT (게이트 심근 SPECT를 이용한 비침습적 심실 수축력 측정방법의 재현성)

  • Kim, Kyeong-Min;Lee, Dong-Soo;Kim, Yu-Kyeong;Cheon, Gi-Jeong;Kim, Seok-Ki;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.3
    • /
    • pp.152-160
    • /
    • 2001
  • Purpose: We tried to establish the reproducibility of the measurement of maximal elastance (Emax) and to compare the degree of the reproducibility of two estimation methods: single pressure-volume loop method and parameter optimization method. Materials and methods: In 47 patients (42 males and 5 females, $53{\pm}10$ years old) with suspected coronary artery disease (election fraction; 22-68%), gated Tc-99m MIBI myocardial SPECT and arterial tonometry were acquired. In 11 patients among these 47 patients, gated SPECT and tonometry were performed twice consecutively with patients in situ. Emax and void volume (Vo) were estimated using single pressure-volume loop method of Lee and parameter optimization method based on linear approximation of Yoshizawa. Correlation between the consecutive measurements by each method and correlation between the two estimation methods were compared. Results: Reproducibility of Emax (r=0.96) and Vo (r=0.99) by single pressure-volume method was better than the reproducibility of Emax (r=0.89) and Vo (r=0.64) by parameter optimization method. Correlations of Emax and Vo were fair between the two methods. The correlation of Emax (r=0.77) was better than that of Vo (r=0.55). Conclusion: Reproducibility of Emax measurement by single pressure-volume loop method using gated myocardial SPECT and arterial tonometry was excellent. Reproducibility by parameter optimization method was also fair but was less than that achieved by single pressure-volume method.

  • PDF

Task Assignment of Multiple UAVs using MILP and GA (혼합정수 선형계획법과 유전 알고리듬을 이용한 다수 무인항공기 임무할당)

  • Choi, Hyun-Jin;Seo, Joong-Bo;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.427-436
    • /
    • 2010
  • This paper deals with a task assignment problem of multiple UAVs performing multiple tasks on multiple targets. The task assignment problem of multiple UAVs is a kind of combinatorial optimization problems such as traveling salesman problem or vehicle routing problem, and it has NP-hard computational complexity. Therefore, computation time increases as the size of considered problem increases. To solve the problem efficiently, approximation methods or heuristic methods are widely used. In this study, the problem is formulated as a mixed integer linear program, and is solved by a mixed integer linear programming and a genetic algorithm, respectively. Numerical simulations for the environment of the multiple targets, multiple tasks, and obstacles were performed to analyze the optimality and efficiency of each method.

Development of Computational Orthogonal Array based Fatigue Life Prediction Model for Shape Optimization of Turbine Blade (터빈 블레이드 형상 최적설계를 위한 전산 직교배열 기반 피로수명 예측 모델 개발)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.611-617
    • /
    • 2010
  • A complex system involves a large number of design variables, and its operation is non-linear. To explore the characteristics in its design space, a Kriging meta-model can be utilized; this model has replaced expensive computational analysis that was performed in traditional parametric design optimization. In this study, a Kriging meta-model with a computational orthogonal array for the design of experiments was developed to optimize the fatigue life of a turbine blade whose behavior under cyclic rotational loads is significantly non-linear. The results not only show that the maximum fatigue life is improved but also indicate that the accuracy of computational analysis is achieved. In addition, the robustness of the results obtained by six-sigma optimization can be verified by comparison with the results obtained by performing Monte Carlo simulations.

An Improved Method for Phenology Model Parameterization Using Sequential Optimization (순차적인 최적화 기법에 의한 생물계절모형 모수추정 방식 개선)

  • Yun, Kyungdahm;Kim, Soo-Hyung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.304-308
    • /
    • 2014
  • Accurate prediction of peak bloom dates (PBD) of flowering cherry trees is critical for organizing local cherry festivals and other associated cultural and economic activities. A two-step phenology model is commonly used for predicting flowering time depending on local temperatures as a result of two consecutive steps followed by chill and heat accumulations. However, an extensive computation requirement for parameter estimation has been a limitation for its practical use. We propose a sequential parameterization method by exploiting previously unused records of development stages. With an extra constraint formed by heat accumulation between two intervening stages, each parameter can then be solved sequentially in much shorter time than the brute-force method. The result was found to be almost identical to the previous solution known for cherry trees (Prunus ${\times}$ yedoensis) in the Tidal Basin, Washington D.C.

A Method of Designing Low-power Feedback Active Noise Control Filter for Headphones/Earphones (헤드폰/이어폰을 위한 저전력 피드백 능동 소음 제어 필터 설계 방법)

  • Seo, Ji-ho;Youn, Dae-Hee;Park, Young-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • This paper presented a method of designing low-power feedback active noise control filter optimized for headphones/earphones. Using constrained optimization, we obtained a high order FIR noise control filter to ensure reasonable noise attenuation performance at high sampling frequency environment. Then using infinite impulse response (IIR) approximation method called Balanced Model Truncation (BMT), we obtained a low order IIR noise control filter suitable for low-power digital signal processing system like headphones/earphones. For further performance improvement, we utilized frequency warping method so that we could obtain more accurately approximated IIR filter and we ensured system stability by reconstructing the low order IIR filter in form of cascaded second order IIR filters. ANC simulation with white noise and stability test verified that the proposed algorithm had superior attenuation performance and better robustness compared to the conventional algorithm.

Design Optimization of Fuel Sensor Location in Aircraft Conformal Fuel Tank (항공기 보조연료탱크의 연료량 측정센서 위치 최적설계)

  • Jung, Kyusung;Yang, Junmo;Lee, Sangchul;Yi, Yongsik;Lee, Jaewook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.332-337
    • /
    • 2018
  • This paper presents the design optimization of fuel sensor location used to measure remained fuel amount in aircraft conformal fuel tank. The conformal fuel tank is utilized to expand the mission range in airplane, and the sensor location is a critical design variable determining the measurement accuracy. In this work, the sensor location is optimized to minimize unmeasurable fuel amount due to non-contact between fuel and sensor. The simplified model is prepared from the conformal fuel tank CATIA model, and the unmeasurable fuel amount is calculated. Then, the optimization is performed using MATLAB optimization solver. The optimized sensor location is validated by comparing with the location obtained using parametric study.

Study on Optimization of Look-Up Table to Reduce Error of Three-dimensional Interpolation (3차원 보간 오차를 개선하기 위한 룩업 테이블의 최적화에 관한 연구)

  • Kim, Joo-Young;Lee, Hak-Sung;Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.12-18
    • /
    • 2007
  • The three dimensional interpolation is widely used for many kinds of color signal transformation such as real-time color gamut mapping. Given input color signal, the output color signal is approximately calculated by the interpolation with the input point and extracted values from a lookup table which is constructed by storing the values of transformation at regularly packed sample points. Apparently, errors of the interpolated approximation heavily depend on the selection of the lookup table. In this paper, a least square method is applied to assigning values of the lookup table with fixed size in order to minimize error of three-dimensional interpolation. The experimental result shows that the proposed method has better interpolation performance.

Spatial Partitioning using filbert Space Filling Curve for Spatial Query Optimization (공간 질의 최적화를 위한 힐버트 공간 순서화에 따른 공간 분할)

  • Whang, Whan-Kyu;Kim, Hyun-Guk
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.23-30
    • /
    • 2004
  • In order to approximate the spatial query result size we partition the input rectangles into subsets and estimate the query result size based on the partitioned spatial area. In this paper we examine query result size estimation in skewed data. We examine the existing spatial partitioning techniques such as equi-area and equi-count partitioning, which are analogous to the equi-width and equi-height histograms used in relational databases, and examine the other partitioning techniques based on spatial indexing. In this paper we propose a new spatial partitioning technique based on the Hilbert space filling curve. We present a detailed experimental evaluation comparing the proposed technique and the existing techniques using synthetic as well as real-life datasets. The experiments showed that the proposed partitioning technique based on the Hilbert space filling curve achieves better query result size estimation than the existing techniques for space query size, bucket numbers, skewed data, and spatial data size.