본 논문에서는 유한비트 근사화를 통하여 고정소수점 연산을 이용하여 DCT구현시 발생하는 오차 영향에 대한 해석을 수행하였다. 고정소수점 연산을 위해서는 유한 비트 근사화를 실시하여야 하는데 이 과정에서 수치 표현범위의 제약으로 인한 오차가 발생하게 되고, 특히 순환 연산구조를 가지는 DCT등의 알고리즘 구현시 급격한 성능의 감소를 가져오게 된다. 본 논문에서는 순환 연산식을 유한비트 근사화를 통하여 구현시 발생되는 에러에 대한 분석을 수행하고, 해석식을 도출하였다.
동형암호는 프라이버시 보존형 신경망 연산을 가능캐한다. 하지만 동형암호는 비산술연산을 직접 연산하지 못해 근사식을 활용하는데, 신경망 정확도 하락을 일으킨다. 이를 극복하기 위해 재학습, Neural Architecture Search 등 방법들이 등장했지만, 큰 소요시간을 필요로 한다. 본 연구는 이 둘보다 빠르면서도 정확도 하락을 적게 일으키는 중간값 유도 근사식 생성 기술을 제안한다.
3차원 그래픽 응용이 가능한 소형 모바일 기기에서의 부동소수점 연산 처리는 전력소모가 많고 하드웨어 비용이 많이 들며 연산 해상도가 너무 정확한 연산보다는 적절한 해상도를 확보하되 하드웨어 자원을 적게 소모하고 전력소모가 낮을수록 바람직하다. 비용이 많이 소요되는 부동소수점 연산은 곱셈과 나눗셈이며, 로그 변환을 이용하면 곱셈과 나눗셈을 덧셈과 뺄셈으로 변환하여 고속 동작을 구현할 수 있으며, 이는 로그 함수값을 얼마나 실제값에 근사화 시킬 수 있는지에 따라 성능이 좌우된다. 본 연구에서는 이러한 고속 부동소수점 연산에 적용될 수 있는 로그변환 회로에 대한 동향을 조사하되, 설계 시 중요하게 고려해야 할 점과 로그변환 회로가 어떻게 근사화되고 적용될 수 있는지에 대하여 상세히 분석한다.
본 논문은 고차 계층 변조, 즉 계층 64QAM의 연판정 비트 검출을 위한 단순화된 연산 방법을 다룬다. 이는 기존 계층 변조의 연판정 비트, 즉 LLR(Log-Likelihood Ratio)값의 근사를 통해 불필요한 연산을 줄여 이에 필요한 지연시간을 줄일 수 있다. 또한 제안된 기법은 기존의 연판정 비트 검출 기법과 매우 유사한 비트 오류율(BER: Bit Error Rate) 성능을 유지하기 때문에 연판정 비트를 활용하는 방송 및 통신 시스템에 폭넓게 적용될 수 있을 것으로 기대한다.
완전동형암호는 암호화된 데이터에 대한 대수적 연산을 지원하며, 최근에는 최대값 함수 등의 비대수적 연산도 근사하는 방법이 연구되고 있다. 그러나 아직 4개 이상의 숫자에 대한 정밀한 맥스 풀링 근사 연구는 이루어지지 않았다. 본 연구에서는 최대값 함수 근사 다항식의 합성을 활용하여 정밀한 맥스 풀링 근사 기법을 제안하였으며, 이를 이론적으로 분석하여 높은 정밀도를 증명하였다. 실험 결과, 제안하는 근사 맥스 풀링은 1ms 이내의 작은 분할 실행 시간과 이론적 분석과 일치하는 높은 정밀도를 보여주었다.
이 논문은 슬라이딩 윈도우를 사용하는 스트림 데이터에서 모든 조인 연산의 상태를 저장하기에 메모리가 충분하지 않을 경우에, 연속적인 슬라이딩 윈도우 조인 연산의 근사치 답을 구하는 문제에 대한 연구이다. 근사치를 구하는 두 가지 방법으로는 최대 부분집합으로 근사치를 구하는 방법과 조인 결과에서 임의의 결과를 택하는 방법이 있다. 전자는 잃어버리는 튜플의 수를 최소화 하고, 후자는 조인의 결과가 집계로 나타날 때 사용된다. 이 논문에서는 임의의 입력 데이터에 슬라이딩 윈도우가 사용되는 경우 두 가지 방법으로 얻는 근사치 모두 효율적이지 못함을 보여준다. 기존의 최대 부분집합에 의해 근사치를 구하는 모델에서는 빈도-기반 모델을 사용하였는데. 샘플링이 문제가 되었다. 오히려 스트림 도착한 이후의 연령-기반 모델이 많은 응용분야에서 더 적절하게 사용 될 수 있음을 보여주고 있다. 이 논문에서는 최대 부분 집합과 임의의 결과라는 두 가지 근사치 측정법을 분석, 그 효율성을 비교하여 보여 준다. 또한, 메모리가 제한 되어있는 환경에서 다중 조인 연산이 수행 될 경우에, 어떤 경우에도 근사치 측정을 최적화할 수 있도록, 조인 연산 전체에 필요한 메모리를 적절하게 할당하는 알고리즘의 효율성을 분석한다.
히스토그램은 데이터베이스 질의 최적기가 사용하는 통게정보 중의 하나이다. 최근에는 데이터베이스의 크기가 기하급수적으로 커짐에 따라, 데이터의 전체적인 성향을 빠르게 파악할 수 있는 방법의 하나로 히스토그램으로 활용하는 방안이 고려되고 있다. 그를 위해서, 히스토그램에서 얻어진 근사값의 오차를 추정할 수 있는 방법이 요구되었다. 기존의 기법에서는 히스토그램의 각 버켓에 실제 빈도와 평균 빈도의 최대차를 추가하고, 이 값을 이용하여 오차추정을 하였다. 그러나, 이 값이 히스토그램 버켓의 전체적인 데이터 분포를 잘 반영하지 못하기 때문에 실제 오차에 근접한 오차 추정을 할 수가 없는 단점이 있었다. 본 논문에서는 이를 극복하기 위해, 히스토그램에 데이터의 분포를 잘 반영하는 정보 즉, 평균값, COUNT/SUM 연산에 대한 최대 오차를 추가하였다. 이 정보들을 이용하여 실제 오차에 보다 근접한 오차 추정을 할 수 있었으며, 부가적으로 SUM/AVG 연산에 대한 보다 정확한 근사값을 얻을 수 있었다.
행렬 곱셈은 과학 및 공학 분야에서 널리 사용되는 기본 연산이다. 딥러닝의 학습 알고리즘에도 행렬 곱셈이 많이 사용된다. 따라서 행렬 곱셈을 효과적으로 수행하기 위한 다양한 알고리즘들 개발하고 있다. 이중 행렬 곱셈의 연산량을 줄이는 방법으로 근사 행렬 곱셈 방법이 있다. 근사 행렬 곱셈은 행렬의 열과 행을 선택하기 위한 적절한 확률 분포를 결정하고, 이 분포에 따라 행렬의 열과 행을 선택하여 근사 행렬 곱셈을 수행한다. 기존의 방법들을 행렬 곱셈에 참여하는 두 개의 행렬 A, B를 모두 고려하여 확률 분포를 생성한다. 본 논문은 행렬 A만을 대상으로 근사 행렬 곱셈에 사용될 행렬의 열과 행을 선택하는 확률 분포를 생성하는 방법을 제안하였다. 기존의 방법들과 제안된 방법들을 사용하여 1000×1000, 2000×2000, 3000×3000, 4000×4000, 5000×5000 행렬에 대하여 근사 행렬 곱셈을 수행하였다. 기존의 방법보다 제안한 방법을 적용한 근사 행렬 곱셈이 평균 0.02%에서 2.34%까지 원래 행렬 곱셈 결과에 더 근접하는 결과를 보였다.
최근 여러 시스템이 하나의 칩에 통합되는 온칩에서 버스 전력 소비가 증가함에 따라 이를 줄이기 위한 방안의 필요성이 제기된다. 반면 버스에서의 에너지 소비 감소를 필요하는 오프칩 환경에서는 주로 DBI(Data Bus Inversion)기법이 활용된다. DBI 기법은 스위칭 횟수를 줄이도록 데이터를 인코딩하는 기법으로 오프칩에서 사용시 스위칭 활동을 평균적으로 18.25% 감소시키고 총 에너지를 효과적으로 감소시킨다. 그러나 온칩에서 기존 DBI 를 적용하게 될 경우 에너지 오버헤드 문제를 야기하기 때문에 온칩에 적합한 새로운 DBI 인코더가 요구된다. 본 논문에서는 에너지 오버헤드를 해결하기 위해 DBI 인코더의 구성요소인 과반수 판정회로에 근사 연산을 도입하여 근사 DBI 인코더를 제안한다. 두개의 제안된 근사-과반수 판정회로를 사용한 DBI 는 평균적인 스위칭 활동을 각각 5.75%, 10.50% 감소한다. 근사 연산으로 인해 기존 DBI 보다 스위칭 활동이 소폭 증가하지만 지연시간이 평균적으로 약 20% 감소하고 전력 소모 또한 약 56% 감소한다.
기존의 채널간간섭 자기소거법에서는 표본화창의 길이를 직교 주파수분할다중화의 심볼 길이와 동일하게 정하였다. 이로 인하여 각 부채널의 간섭계수를 구하기 위한 복소연산량이 급격이 증가된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 채널간간섭 자기소거법에서 나타나는 간섭계수에 대한 근사식을 제시한다. 또한, 제시된 근사식을 기반으로 표본화창의 길이를 제한시킬 때 간섭계수의 평균자승오차와 복소연산량을 분석하였다. 그 결과, 제시된 근사식은 원식에 비하여 평균자승오차 면에서 0.01% 미만의 오차를 가지는 것으로 나타났다. 이에 비하여 부채널의 수가 1024인 경우 간섭계수 계산을 위한 연산량은 98% 이상 감소되는 것을 확인하였다. 따라서 제시된 근사식은 자기소거 능력은 거의 변화시키지 않으면서도 연산량을 현저히 감소시킬 수 있으므로 채널간간섭 자기소거법 알고리즘 개발에 유용하게 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.