• Title/Summary/Keyword: 근사알고리즘

Search Result 779, Processing Time 0.029 seconds

Probability Estimation Method for Imputing Missing Values in Data Expansion Technique (데이터 확장 기법에서 손실값을 대치하는 확률 추정 방법)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.91-97
    • /
    • 2021
  • This paper uses a data extension technique originally designed for the rule refinement problem to handling incomplete data. This technique is characterized in that each event can have a weight indicating importance, and each variable can be expressed as a probability value. Since the key problem in this paper is to find the probability that is closest to the missing value and replace the missing value with the probability, three different algorithms are used to find the probability for the missing value and then store it in this data structure format. And, after learning to classify each information area with the SVM classification algorithm for evaluation of each probability structure, it compares with the original information and measures how much they match each other. The three algorithms for the imputation probability of the missing value use the same data structure, but have different characteristics in the approach method, so it is expected that it can be used for various purposes depending on the application field.

A Variable Latency Goldschmidt's Floating Point Number Divider (가변 시간 골드스미트 부동소수점 나눗셈기)

  • Kim Sung-Gi;Song Hong-Bok;Cho Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.380-389
    • /
    • 2005
  • The Goldschmidt iterative algorithm for a floating point divide calculates it by performing a fixed number of multiplications. In this paper, a variable latency Goldschmidt's divide algorithm is proposed, that performs multiplications a variable number of times until the error becomes smaller than a given value. To calculate a floating point divide '$\frac{N}{F}$', multifly '$T=\frac{1}{F}+e_t$' to the denominator and the nominator, then it becomes ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'. And the algorithm repeats the following operations: ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than ‘$e_r=2^{-p}$'. The value of p is 29 for the single precision floating point, and 59 for the double precision floating point. Let ’$F_i=1+e_i$', there is $F_{i+1}=1-e_{i+1},\;e_{i+1}',\;where\;e_{i+1}, If '$[F_i-1]<2^{\frac{-p+3}{2}}$ is true, ’$e_{i+1}<16e_r$' is less than the smallest number which is representable by floating point number. So, ‘$N_{i+1}$ is approximate to ‘$\frac{N}{F}$'. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables ($T=\frac{1}{F}+e_t$) with varying sizes. 1'he superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a divider. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc

A Variable Latency Newton-Raphson's Floating Point Number Reciprocal Computation (가변 시간 뉴톤-랍손 부동소수점 역수 계산기)

  • Kim Sung-Gi;Cho Gyeong-Yeon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.95-102
    • /
    • 2005
  • The Newton-Raphson iterative algorithm for finding a floating point reciprocal which is widely used for a floating point division, calculates the reciprocal by performing a fixed number of multiplications. In this paper, a variable latency Newton-Raphson's reciprocal algorithm is proposed that performs multiplications a variable number of times until the error becomes smaller than a given value. To find the reciprocal of a floating point number F, the algorithm repeats the following operations: '$'X_{i+1}=X=X_i*(2-e_r-F*X_i),\;i\in\{0,\;1,\;2,...n-1\}'$ with the initial value $'X_0=\frac{1}{F}{\pm}e_0'$. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than $'e_r=2^{-p}'$. The value of p is 27 for the single precision floating point, and 57 for the double precision floating point. Let $'X_i=\frac{1}{F}+e_i{'}$, these is $'X_{i+1}=\frac{1}{F}-e_{i+1},\;where\;{'}e_{i+1}, is less than the smallest number which is representable by floating point number. So, $X_{i+1}$ is approximate to $'\frac{1}{F}{'}$. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables $(X_0=\frac{1}{F}{\pm}e_0)$ with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal unit. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia scientific computing, etc.

Diagonalized Approximate Factorization Method for 3D Incompressible Viscous Flows (대각행렬화된 근사 인수분해 기법을 이용한 3차원 비압축성 점성 흐름 해석)

  • Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.293-303
    • /
    • 2011
  • An efficient diagonalized approximate factorization algorithm (DAF) is developed for the solution of three-dimensional incompressible viscous flows. The pressure-based, artificial compressibility (AC) method is used for calculating steady incompressible Navier-Stokes equations. The AC form of the governing equations is discretized in space using a second-order-accurate finite volume method. The present DAF method is applied to derive a second-order accurate splitting of the discrete system of equations. The primary objective of this study is to investigate the computational efficiency of the present DAF method. The solutions of the DAF method are evaluated relative to those of well-known four-stage Runge-Kutta (RK4) method for fully developed and developing laminar flows in curved square ducts and a laminar flow in a cavity. While converged solutions obtained by DAF and RK4 methods on the same computational meshes are essentially identical because of employing the same discrete schemes in space, both algorithms shows significant discrepancy in the computing efficiency. The results reveal that the DAF method requires substantially at least two times less computational time than RK4 to solve all applied flow fields. The increase in computational efficiency of the DAF methods is achieved with no increase in computational resources and coding complexity.

Feasibility Study of Hierarchical Kriging Model in the Design Optimization Process (계층적 크리깅 모델을 이용한 설계 최적화 기법의 유용성 검증)

  • Ha, Honggeun;Oh, Sejong;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.108-118
    • /
    • 2014
  • On the optimization design problem using surrogate model, it requires considerable number of sampling points to construct a surrogate model which retains the accuracy. As an alternative to reduce construction cost of the surrogate model, Variable-Fidelity Modeling(VFM) technique, where correct high fidelity model based on the low fidelity surrogate model is introduced. In this study, hierarchical kriging model for variable-fidelity surrogate modeling is used and an optimization framework with multi-objective genetic algorithm(MOGA) is presented. To prove the feasibility of this framework, airfoil design optimization process is performed for the transonic region. The parameters of PARSEC are used to design variables and the optimization process is performed in case of varying number of grid and varying fidelity. The results showed that pareto front of all variable-fidelity models are similar with its single-level of fidelity model and calculation time is considerably reduced. Based on computational results, it is shown that VFM is a more efficient way and has an accuracy as high as that single-level of fidelity model optimization.

Experimental Study on Source Locating Technique for Transversely Isotropic Media (횡등방성 매질의 음원추적기법에 대한 실험적 연구)

  • Choi, Seung-Beum;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.56-67
    • /
    • 2015
  • In this study, a source locating technique applicable to transversely isotropic media was developed. Wave velocity anisotropy was considered based on the partition approximation method, which simply enabled AE source locating. Sets of P wave arrival time were decided by the two-step AIC algorithm and they were later used to locate the AE sources when having the least error compared with the partitioned elements. In order to validate the technique, pencil lead break test on artificial transversely isotropic mortar specimen was carried out. Defining the absolute error as the distance between the pencil lead break point and the located point, 1.60 mm ~ 14.46 mm of range and 8.57 mm of average were estimated therefore it was regarded as thought to be 'acceptable' considering the size of the specimen and the AE sensors. Comparing each absolute error under different threshold levels, results showed small discrepancies therefore this technique was hardly affected by background noise. Absolute error could be decomposed into each coordinate axis error and through it, effect of AE sensor position could be understood so if optimum sensor position was able to be decided, one could get more precise outcome.

Real-Time Hierarchical Techniques for Rendering of Translucent Materials and Screen-Space Interpolation (반투명 재질의 렌더링과 화면 보간을 위한 실시간 계층화 알고리즘)

  • Ki, Hyun-Woo;Oh, Kyoung-Su
    • Journal of Korea Game Society
    • /
    • v.7 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • In the natural world, most materials such as skin, marble and cloth are translucent. Their appearance is smooth and soft compared with metals or mirrors. In this paper, we propose a new GPU based hierarchical rendering technique for translucent materials, based on the dipole diffusion approximation, at interactive rates. Information of incident light, position, normal, and irradiance, on the surfaces are stored into 2D textures by rendering from a primary light view. Huge numbers of pixel photons are clustered into quad-tree image pyramids. Each pixel, we select clusters (sets of photons), and then we approximate multiple subsurface scattering term with the clusters. We also introduce a novel hierarchical screen-space interpolation technique by exploiting spatial coherence with early-z culling on the GPU. We also build image pyramids of the screen using mipmap and pixel shader. Each pixel of the pyramids is stores position, normal and spatial similarity of children pixels. If a pixel's the similarity is high, we render the pixel and interpolate the pixel to multiple pixels. Result images show that our method can interactively render deformable translucent objects by approximating hundreds of thousand photons with only hundreds clusters without any preprocessing. We use an image-space approach for entire process on the GPU, thus our method is less dependent to scene complexity.

  • PDF

Improved Key-Recovery Attacks on HMAC/NMAC-MD4 (HMAC/NMAC-MD4에 대한 향상된 키 복구 공격)

  • Kang, Jin-Keon;Lee, Je-Sang;Sung, Jae-Chul;Hong, Seok-Hie;Ryu, Heui-Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.63-74
    • /
    • 2009
  • In 2005, Wang et al. discovered devastating collision attacks on the main hash functions from the MD4 family. After the discovery of Wang, many analysis results on the security of existing hash-based cryptographic schemes are presented. At CRYPTO'07, Fouque, Leurent and Nguyen presented full key-recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5[4]. Such attacks are based on collision attacks on the underlying hash function, and the most expensive stage is the recovery of the outer key. At EUROCRYPT'08, Wang, Ohta and Kunihiro presented improved outer key recovery attack on HMAC/NMAC-MD4, by using a new near collision path with a high probability[2]. This improves the complexity of the full key-recovery attack on HMAC/NMAC-MD4 which proposed by Fouque, Leurent and Nguyen at CRYPTO'07: The MAC queries decreases from $2^{88}$ to $2^{72}$, and the number of MD4 computations decreases from $2^{95}$ to $2^{77}$. In this paper, we propose improved outer key-recovery attack on HMAC/NMAC-MD4 with $2^{77.1246}$ MAC queries and $2^{37}$ MD4 computations, by using divide and conquer paradigm.

Double Precision Integer Divider Using Multiplier (곱셈기를 사용한 배정도 정수 나눗셈기)

  • Song, Hong-Bok;Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.637-647
    • /
    • 2010
  • This paper suggested an algorithm that uses a multiplier, 'w bit $\times$ w bit = 2w bit', to process $\frac{N}{D}$ integer division of 2w bit integer N and w bit integer D. An algorithm suggested of the research, when the divisor D is '$D=0.d{\times}2^L$, 0.5 < 0.d < 1.0', approximate value of $\frac{1}{D}$, '$1.g{\times}2^{-L}$', which satisfies '$0.d{\times}1.g=1+e$, e < $2^{-w}$', is defined as over reciprocal number and the dividend N is segmented in small word more than 'w-3' bit, and partial quotient is calculated by multiplying over reciprocal number in each segmented word, and quotient of double precision integer division is evaluated with sum of partial quotient. The algorithm suggested in this paper doesn't require additional correction, because it can calculate correct reciprocal number. In addition, this algorithm uses only multiplier, so additional hardware for division is not required to implement microprocessor. Also, it shows faster speed than the conventional SRT algorithm. In conclusion, results from this study could be used widely for implementation SOC(System on Chip) and etc. which has been restricted to microprocessor and size of the hardware.

Economic Evaluation Algorithm of Energy Storage System using the Secondary Battery (이차전지를 이용한 전기저장장치(BESS)의 경제성 평가 알고리즘)

  • Song, Seok-Hwan;Kim, Byung-Ki;Oh, Seung-Teak;Lee, Kye-Ho;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3813-3820
    • /
    • 2014
  • Recently, with the increase in electrical consumption and the unbalanced power demand and supply, the power reserve rate is becoming smaller and the reliability of the power supply is deteriorating. Under this circumstance, a Battery Energy Storage System (BESS) is considered to be an essential countermeasure for demand side management. On the other hand, an economic evaluation is a critical issue for the introduction of a power system because the cost of BESS is quite high. Therefore, this paper presents economic evaluation method for utility use by considering the best mix method and successive approximation method, and an economic evaluation method for customer use by considering the peak shaving function based on the real time price. From a case study on a model power system and educational customer, it was confirmed that the proposed method is a practical tool for the economic analysis of BESS.