• Title/Summary/Keyword: 근궤적

Search Result 68, Processing Time 0.033 seconds

Research/Development Trend and Technical Enablers of Trajectory-based Operations in Air Traffic Management (항공교통관리 궤적기반운용 연구 개발 동향 및 요소기술)

  • Eun, Yeonju;Jeon, Daekeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.349-358
    • /
    • 2015
  • The research and development trend of Trajectory-based Operations(TBO), which is considered as a key concept of future Air Traffic Management(ATM), is presented in this paper. The operational concepts of TBO in ASBU(Aviation System Block Upgrade) from ICAO(International Civil Aviation Organization) have been summarized, and the detailed operational concepts and procedures, which can be realized in the near future, are described through the investigations of operational concept development and related research/development activities of TBO in USA and Europe. The technical enablers, which have been identified based on understanding of TBO operational concepts, are introduced, and related research/development status of each technical enabler has been presented.

Weak Stability Boundary를 이용한 지구-달 천이궤적 연구

  • Gang, Sang-Uk;Choe, Gi-Hyeok;Sim, Eun-Seop
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.162.2-162.2
    • /
    • 2012
  • 한국형 발사체 KSLV-2의 발사능력을 고려하면 달 탐사선의 총 무게는 약 550kg이 된다. 따라서 달 탐사선에 탑재할 수 있는 탑재체 무게를 최대화하기 위해서는 지구에서 달로 가는 천이궤적을 가장 효율적으로 설계하여 연료 소모량을 최소화하여야 한다. 본 연구에서는 최근에 달 탐사 천이궤적으로 가장 많이 사용되고 있는 Weak Stability Boundary 천이궤적에 관해 연구를 수행하였다. Weak Stability Boundary 천이궤적은 지구로부터 출발한 후 원지점 약 1.4 km(지구-태양의 L1 점 근처)까지 비행한 후 태양풍을 통해 에너지를 얻어 근지점 거리를 지구-달 거리만큼 증가시켜 LOI(Lunar Orbit Injection)시 ${\Delta}V$를 최소화하여 달 궤도에 들어가는 방법이다. Weak Stability Boundary 천이방법의 TLI(Trans Lunar Injection) 값은 직접천이 방법의 TLI 값보다 더 크지만 달 궤도 진입에 필요한 LOI ${\Delta}V$값은 25% 정도 덜 든다는 장점이 있다. 이 방법은 일본의 Hiten 탐사선이 최초로 사용하였으며, 달에 도착하기까지 수개월이 걸리는 단점이 있다. Weak Stability Boundary 천이궤적 시뮬레이션을 통해 최대로 절약할 수 있는 연료 소모량을 확인할 수 있었으며, 다른 천이방법들과의 장단점 비교를 통해 한국형 달 탐사선의 지구-달 천이궤적 후보로 사용 될 수 있음을 확인하였다.

  • PDF

F0 Contour Model based on Temporal Decomposition (시간적 분해에 기반한 F0 궤적 모델에 관한 연구)

  • 변효진;김연준;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.75-83
    • /
    • 1999
  • This paper proposes a new F0 contour model for intonation control in speech synthesis. We assume that the F0 contour of an utterance can be described using a sequence of time-overlapping events, which determine the fluctuation of a given F0 contour, described by asymmetric Gaussian functions. In addition, We propose a parameter estimation algorithm for the proposed model. The proposed model is not developed with a particular phonological theory in mind, and can be used in both F0 contour analysis and synthesis. For testing our F0 model, we collected 500 sentences from various genres and built a corresponding speech corpus uttered by a professional female announcer. As n result of F0 resynthesis experiment using the proposed model, the RMSE was 7.87Hz for given speech corpus.

  • PDF

A Comparison of DC-DC Buck Converter Controller (DC-DC 벅 컨버터 제어기 비교)

  • Kang, Min Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.281-285
    • /
    • 2013
  • Transfer function of Buk DC-DC converter is derived using Laplace transformed LC filter. Using root locus and simulation waveform, this paper shows that Type2 controller proposed in reference has poor performance. Using root locus PI controller has designed. Using operational amp, PI controller is realized. Properly operated Type2 controller is proposed and proved using simulation result.

An Analysis of Mid-Course Correction Maneuvers according to Launch-Vehicle Dispersion in Earth-Moon Phasing-Loop Trajectory (지구-달 위상전이궤적에서 발사체 투입오차가 중간경로수정기동에 미치는 영향 분석)

  • Choi, Su-Jin;Lee, Dong-Hun;Suk, Byong-Suk;Min, Seung-Yong;Rew, Dong-Young
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.35-40
    • /
    • 2016
  • Mid-course correction maneuvers (MCCMs) are necessary to correct the launch-vehicle dispersion to go to the Moon. There were 3 or 4 MCCMs needed for a direct transfer trajectory. But the strategy for MCCMs of the phasing-loop trajectory is different, because it has a longer trans-lunar trajectory than direct transfer does. An orbiter using a phasing-loop trajectory has several rotations of the Earth, so the orbiter has several good places, such as perigee and apogee, to correct the launch-vehicle dispersion. Although launch dispersion is relatively high, the launch vehicle is not as accurate as we expected. A good MCCM strategy can overcome the high dispersion by using small-magnitude correction maneuvers. This paper describes the phasing-loops sequence and strategy to correct high launch-vehicle dispersions.

PID Controller and Derivative-feedback Gain Design of the Direct-drive Servo Valve Using the Root Locus and Manual Tuning (근궤적과 수동 조정에 의한 직접 구동형 서보밸브의 PID 제어기 및 미분피드백 이득 설계)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.15-23
    • /
    • 2016
  • The direct-drive servo valve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the dc motor. Since the DDV structure is simple, it is less expensive, more reliable, and offers a reduced internal leakage and a reduced sensitivity to fluid contamination. The control system of the DDV is highly nonlinear due to a current limiter, a voltage limiter, and the flow-force effect on the spool motion. The shape of the step response of the DDV-control system varies considerably according to the magnitudes of the step input and the load pressure. The system-design requirements mean that the overshoots should be less than 20%, and the errors at 0.02s should be less than 2%, regardless of the reference-step input sizes of 1V and 5V and the load-pressure magnitudes of 0MPa and 20.7MPa. To satisfy the system-design requirements, the PID-controller parameters of $K_c$, $T_i$ and $T_d$, and the derivative-feedback gain of $K_{der}$ are designed using the root locus and manual tuning.

Development of Scheduling System for Trajectory Based Air Traffic Management (궤적 기반의 항공 교통 관리를 위한 스케줄링 시스템 개발)

  • Oh, Eun-Mi;Eun, Yeonju;Kim, Hyounkyoung;Jeon, Daekeun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.367-374
    • /
    • 2018
  • A trajectory-based scheduling system is proposed for air traffic management using next generation aviation data communication link. Based on the service concept of 4-dimensional trajectory data link (4DTRAD) using air traffic serveices (ATS) datalink Baseline 2, a procedure for trajectory-based operation of an en-route flight is established and described in detail. To mitigate air traffic controllers' workload which might be caused by various and complicated data utilization, a prototype of the scheduling system, which predicts the aircraft trajectory based on the flight intents received by air traffic service system and provides advisory information for air traffic control, was developed. The simulation environment for trajectory based operation was built to validate the scheduling functionality of the prototype.

Study on Trajectory Prediction Accuracy Analysis Method for Performance Improvement of a Trajectory Prediction Module of Arrival Manager (도착관리시스템 궤적 예측 모듈의 성능 개선을 위한 궤적 예측 정확도 분석 방법 연구)

  • Oh, Eun-Mi;Kim, Hyounkyoung;Eun, Yeonju;Jeon, Daekeun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.28-34
    • /
    • 2015
  • An analysis method of trajectory prediction has been suggested and the developed trajectory prediction module, which is an important functional component of the Arrival Manager (AMAN) of Jeju airport, has been tested by applying the suggested method. The objective of this method is to improve prediction performance of the trajectory prediction module. The trajectory prediction module predicts the trajectories based on the real-time track data and flight plans. Therefore, the suggested analysis method includes the simulation framework which is based on real-time playback, recording, and graphic display systems for testing. Besides, the definition of time error, which is a important index for the time based scheduling system, such as AMAN, is included in the suggested analysis method. An example of arrival time prediction accuracy improvement through the suggested analysis method has also been presented.

Heel Trajectory Analysis Method of Walking using a Wearable Sensor (착용형 센서를 이용한 보행 뒤꿈치 궤적 분석 방법)

  • Hee-Chan Kim;Hyun-Jin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.731-736
    • /
    • 2023
  • Walking is a periodic motion that contains specific phases and is a basic movement method for humans. Through gait analysis, various musculoskeletal health conditions can be identified. In this study, we propose a calf wearable sensor system that can perform gait analysis without space limitations. Using a ToF(: Time-of-Flight) sensor that measures distance and an IMU(: Inertial Measurement Unit) sensor that measures inclination the heel trajectory of walking was derived by proposed method. In case of abnormal gait with risk of fall, gait is evaluated by analyzing the change pattern of the heel trajectory.