• Title/Summary/Keyword: 극한전단강도

Search Result 140, Processing Time 0.029 seconds

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.

Study on Behavior of Failure of Footing through Numerical Analysis (수치해석을 통한 기초지반의 파괴거동 고찰)

  • Lee, Seung-Hyun;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2212-2218
    • /
    • 2015
  • In order to find out the load bearing behavior of sand and clay which sustain three types of shallow footing, finite element analyses were performed. Failure zone of sand which sustain strip footing was affected by relative density of sand whereas, failure zone of clay was not affected by soil strength and it was similar to the failure zone which is considered in theory. Considering the shape of load-settlement curves obtained by numerical analyses, punching shear failure can be seen in loose sand and ultimate bearing load can not be seen in dense sand whereas, yielding point can be seen in clay. Ultimate bearing loads for sand predicted by theory were greater than those obtained by numerical analyses and ultimate bearing loads for clay predicted by theory were similar to those of numerical analyses. Ultimate bearing loads determined by 1 inch settlement criteria were slightly less than those of numerical analyses.

The Ultimate Shear Strength of RCS System Beam-Column Joints Considering the Transverse Beam (직교보를 고려한 RCS구조 보-기둥 접합부의 극한전단강도)

  • An, Jae-Hyeok;Park, Cheon-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.158-163
    • /
    • 2005
  • This paper is focusing on the model to predict the ultimate shear strength on joints of composite system (RCS) with reinforced concrete columns and steel beams considering the transverse beam. It reviews the ratio of experimental shear strength to design strength calculated by existing desist equations which are proposed by Kanno, Wight, Noguchi and the rising of strength by the transverse beams. When the shear strength of joints is estimated, it is necessary to do research work for the stress transfer mechanism considering two concrete strut of inner and outer panel by web of the transverse beam. In order to confirm it requires further experimental and analytical study.

A Study on the Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced UHPC and Inverted-T Steel Considering Compressive Strength Level (압축강도 수준을 고려한 강섬유 보강 UHPC와 역T형 강재 합성보의 휨거동 실험 연구)

  • Yoo, Sung-Won;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.677-685
    • /
    • 2015
  • In a will to subdue the brittleness as well as the low tensile and flexural strengths of ordinary concrete, researches are being actively watched worldwide on steel fiber-reinforced Ultra High Performance Concrete (UHPC) obtained by admixing steel fibers in ultra high strength concrete. For the purpose of maximizing advantage of UHPC, this study removes the upper flange of the steel girder to apply an inverted T-shape girder for the formation of the composite beam. This paper intends to evaluate the behavior of the shear connectors and the flexural characteristics of the composite beam made of the inverted T-shape girder and UHPC slab using 16 specimens considering the compressive strength of concrete, the mixing ratio of steel fiber, the spacing of shear connectors and the thickness of the slab as variables. In view of the test results, it seemed that the appropriate stud spacing should range between 100 mm and 2 or 4 times the thickness of the slab. Moreover, the relative displacement observed in the specimens showed that ductile behavior was secured to a certain extent with reference to the criteria for ductile behavior suggested in Eurocode-4. The specimens with large stud spacing exhibited larger values than given by the design formula and revealed that the shear connectors developed larger ultimate strength than predicted owing to the action of UHPC and steel after non-composite behavior. Besides, the specimens with narrow stud spacing failed suddenly through compression at the upper chord of UHPC before reaching the full capacity of the shear connectors.

A Quantitative Physical Parameter for Detection of Ultimate Failure State of Soil Using CEL Method in Finite Element Analysis (CEL 기법을 이용한 유한 요소 해석에서 지반의 극한 파괴 상태 감지를 위한 정량적 물리량 기준)

  • Kim, Seongmin;Lee, Ju-Hyung;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.59-69
    • /
    • 2018
  • In order to use the limit equilibrium theory, it is necessary to find a slip line under the ultimate failure condition. The strength reduction method using the Lagrangian finite element method defines the ultimate failure state at a time when the numerical solution cannot converge within the certain number of the iteration. When the coupled Eulerian-Lagrangian (CEL) method is used, however, such definition is inappropriate because the numerical solution of the CEL method can converge even under the ultimate failure condition. In this study, an objective condition designating the ultimate failure state in the finite element analysis adopting the CEL method was proposed. In the problem of the bearing capacity of the undrained soft ground subjected to the strip footing loading, we found that the rate of the plastic dissipated energy is highly sensitive at the load of the theoretical limit of the ultimate failure state.

A Study on the Dynamic Response of RC "L" Joint Under the Simulated Seismic Load (모의 지진하중을 받는 RC "L" joint의 동적거동에 관한 연구)

  • 박승범;청궁리
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.3
    • /
    • pp.100-107
    • /
    • 1982
  • 최근 철근 콘크리트 구조물의 지진하중 및 이와 유사한 진동하중에 대한 내진안전성 문제가 대두되어 이에 관한 모형공식체의 진동실험 및 실존구조물의 동적구조특성의 해석 등에 의한 내진성 향상을 위한 보강방법이 강구되고 있다. 본 연구에서는 진동하중에 파괴되기 쉬룬 철근 콘크리트 보와 기둥이 상호 교차되는 죠인트 구역의 동적파괴거동을 확인하기 위하여 "L"형 철근 콘크리트 죠인트와 부재를 제작, 모의지진하중 조건하에서의 동적 응답특성을 구명하고자 반복하중에 따른 joint구역과 보 및 기둥의 동적파괴거동을 고찰하였다. 특히 내진구조물 설계에 주요 요소인 연성(m)이 0.5, 1.0, 3.0일 때 각각 3회씩 그리고 m=5.0일 때 부재가 완전히 파괴될 때까지 4회 반복하여 반복하중을 작용시키면서 이때의 부재의 극한강도 및 그 변형성능을 LVDT System을 사용하여 조사분석하였으며, 파괴성상은 물론 배근효과에 대하여도 이를 구명하고자 노력하였다. 본 연구 결과 무엇보다도 부재의 강성과 내력의 향상 및 신축만곡, 전단변형 등의 변형성능의 개선 그리고 보의 휨파괴에 대한 보강 및 joint구역의 전단보강은 내진구조물 설계를 위하여 중요 사항임을 확인하였다.

  • PDF

Tests for Moment Redistribution in Flat Plates with Different Reinforcement Details according to End and Midspan Moment Distributions (단부 및 중앙부 플랫플레이트의 철근 분배율에 따른 모멘트 재분배 실험)

  • Choi, Jung-Wook;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.603-611
    • /
    • 2007
  • Three interior slab-column connections designed by equal static moments and by different distribution of end and midspan moments were tested. Each test specimen consists of a 4.2 m square slab and a 355 mm square column stub. The slab thickness is 152 mm. Test results showed not only that flat plate systems can undergo considerable redistribution of moments from the uncracked state to final maximum capacity, but also that the distribution of moments is controlled largely by the distribution of reinforcement adopted by the designer. Tests also indicated that the punching shear strength of slabs can be affected by the redistributed moments.

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.

An Experimental Study on the Shear Behavior of RC Beams Strengthened with Near Surface Mounted and Externally Bonded CFRP Strips (표면매입 및 외부부착 탄소섬유판으로 보강된 철근콘크리트 부재의 전단 거동에 관한 실험적연구)

  • Lim, Dong-Hwan;Kwon, Yeong-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • The purpose of this study is to investigate the shear strengthening effectiveness of the beams strengthened with near surface mounted (NSM) and external bonded (EB) CFRP strips. A total of nine concrete beams were made and tested. From this study, it was found that the shear stiffness and strength of the beams strengthened with NSM and EB strips were significantly improved compared to the control beam. Failure of the beam strengthened with NSM and EB strips was initiated by shear cracks, propagated diagonally to the adjacent epoxy grooves without crossing the epoxy and finally sudden diagonal crack connecting the point of application of load and flexural crack was occurred. For the beam strengthened combined with NSM and EB CFRP strips, the tensile strains in the NSM CFRP strips were observed in the range of 0.35% to 0.45% and strains with EB strips were measured about 0.3%.

Stress Block of High Strength Polymer Concrete Flexural Members (고강도 폴리머 콘크리트 휨부재의 응력블럭)

  • 김관호;김남길;연규석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.638-644
    • /
    • 2002
  • The stress-strain relationship of polymer concrete flexural member was evaluated using C-shaped polyester concrete specimen, the compressive strength of which is 1400 kgf/$\textrm{cm}^2$. Eccentric compression test was performed to estimate the parameters, ${\alpha}$, ${\beta}$1, ${\gamma}$ for equivalent rectangular stress block. The ultimate moment strength ware obtained from the bending test on reinforced polymer concrete beams which were prepared with S different tensile steel ratios with a shear span ratio of 4.0. These values were compared with theoretical ultimate moment strengths, which were obtained using the parameters ${\alpha}$=0.61 and ${\beta}$1=0.73 from stress-stain curves of C-shaped specimens. The results showed that, when tensile steel ratio was over 0.50 $\rho$b, the experimentally obtained moment strengths were well matched with theoretically calculated values. In order to develop accurate criteria for polymer concrete flexural members, however, many other expermental studies for parameter determination are necessary using C-shaped specimens which have various compressive strengths and different sizes.