• Title/Summary/Keyword: 극점-배치

Search Result 52, Processing Time 0.023 seconds

Pole placement self-tuning control of robot manipulators (극점 배치 자기 동조에 의한 로보트 매니퓰레이터 제어)

  • 이종용;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.32-35
    • /
    • 1987
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonlinearties and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which combines the pole placement with the extended linearized perturbation model. And this control scheme has two components: a feadforward control and a feedback compensation control. Based on this, the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF

A Study on Reduced Variance Self-Tuning Algorithm Using a Variable Forgetting Factor (시변 망각 인자를 사용하는 최소 자승 추정의 극점 -배치 자기동조 알고리즘에 관한 연구)

  • Park, Chan-Young;Do, Mi-Sun;Park, Mi-Gnon;Lee, Sang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.305-308
    • /
    • 1988
  • Pole assignment controller with variable forgetting factor is generalizaed to allow the output and/or input variance to be reduced. The algorithm can give significant reductions in variance for little extra computational effort and is presented for servo-tracking using leat-squares estimation. Moreover, the use of a variable forgetting factor with correct choice of information bound can avoid 'blowing-up' of the covariance matrix of the estimates and subsequent unstable control.

  • PDF

Adaptive Pole-Placement and Self-Tuning Control for a Robotic Manipulator (적응 극점 배치 및 자기동조 제어 방법에 의한 로보트 매니퓰레이터 제어)

  • 이상효;양태규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.9
    • /
    • pp.655-662
    • /
    • 1988
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a deired trajectory in spite of the presence of nonlinearies and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which controls the extended linearized perturbaton model via the pole placement, and this control. The feasibility of the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF

A study on computer algorithm for pole assignment in multivariable control systems (다변수 제어계통의 극점배치를 위한 컴퓨터 앨고리즘에 관한 연구)

  • 한만춘;장성환
    • 전기의세계
    • /
    • v.31 no.4
    • /
    • pp.296-302
    • /
    • 1982
  • The computer algorithm and program are developed to obtain the Luenberger Canonical form and the transform matrices for linear time invariant multivariable control systems. The model controller of an eigth order system, which assigns the modes of the multivariable control systems and closed-loop matrices are computed numerically by the developed programs. It is shown that the computed results coincide with the Luenberger's and Kalman's method. The gain of the model controller has varied from 10$^{-3}$ to 10$^{5}$ by the modes assignment of the open-loop system.

  • PDF

Linear system analysis via wavelet-based pole assignment (웨이블릿 기반 극점 배치 기법에 의한 선형 시스템 해석)

  • Kim, Beom-Soo;Shim, Il-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1434-1439
    • /
    • 2008
  • Numerical methods for solving the state feedback control problem of linear time invariant system are presented in this paper. The methods are based on Haar wavelet approximation. The properties of Haar wavelet are first presented. The operational matrix of integration and its inverse matrix are then utilized to reduce the state feedback control problem to the solution of algebraic matrix equations. The proposed methods reduce the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity and applicability of the proposed methods.

A Robust Pole Placement for Uncertain Linear Systems via Linear Matrix Inequalities (선형행렬부등식에 의한 불확실한 선형시스템의 견실한 극점배치)

  • 류석환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.476-479
    • /
    • 2000
  • This paper deals with a robust pole placement method for uncertain linear systems. For all admissible uncertain parameters, a static output feedback controller is designed such that all the poles of the closed loop system are located within the prespecfied disk. It is shown that the existence of a positive definite matrix belonging to a convex set such that its inverse belongs to another convex set guarantees the existence of the output feedback gain matrix for our control problem. By a sequence of convex optimization the aforementioned matrix is obtained. A numerical example is solved in order to illustrate efficacy of our design method.

  • PDF

Base Acceleration Feedforward Control for an Active Magnetic Bearing System Subject to Base Motion (베이스 가진을 받는 전자기 베어링계의 베이스 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1028-1033
    • /
    • 2002
  • This paper concerns on a non-rotating axis-active magnetic bearing (AMB) system subject to base motion. In such a system, it is desirable to retain the axis within the predetermined air-gap. Motivated from this, an optimal acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate that the proposed feedforward control reduces the air-gap deviation to 29% that by feedback control alone.

  • PDF

Implementation of Self-Tuning Speed Controller for DC Motor Drive System using RLS Algorithm and Pole-Placement Method (RLS 알고리즘과 극점배치방법을 이용한 DC전동기의 자기동조 속도제어기의 구현)

  • Cha, Eung-Seok;Ji, Jun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.488-490
    • /
    • 1999
  • This paper describes the design of self-tuning speed controller for DC motor drive system using RLS(Recursive Least Squares) algorithm and Pole-Placement method. The model parameters, related to inertia and damping coefficient of motor, are estimated on-line by using RLS estimation algorithm. And a control signal is calculated by using pole placement method. Simulation and experimental results show that the proposed controller possesses excellent adaptation capability than a conventional PI/IP controller under parameter change.

  • PDF

Fuzzy Controller Design for Nonlinear Systems Using Optimal Pole-Placement Schemes (최적 극점 배치 기법을 이용한 비선형 시스템의 퍼지 제어기의 설계)

  • Lee, Nam-Su;Joo, Young-Hoon;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.510-512
    • /
    • 1999
  • In this paper, we present a method for the analysis and design of fuzzy controller for nonlinear systems. In the design procedure, we represent the dynamics of nonlinear systems using a Takagi-Sugeno fuzzy model and formulate the controller rules, which shares the same fuzzy sets with the fuzzy system, using parallel distributed compensation method. Then, after the feedback gain of each local state feedback controller is obtained using the existing optimal pole-placement scheme, we construct an overall fuzzy logic controller by blending all local state feedback controller. Finally, the effectiveness and feasibility of the proposed fuzzy-model-based controller design method has been evaluated through an inverted pendulum system.

  • PDF