• Title/Summary/Keyword: 극저온 인성

Search Result 13, Processing Time 0.024 seconds

A Study on the Weld Part Fracture Toughness of Austenite Type Stainless Steel for Cryogenic Liquid Nitrogen Storage Tank (초저온 액화질소 저장탱크 오스트나이트계 스테인리스강의 용접부의 파괴인성 연구)

  • Kim, Young-Deuk;Choi, Dong-Jun;Park, Hyung-Wook;Cho, Jong-Rae;Bae, Won-Byoung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.802-808
    • /
    • 2011
  • One of the important mechanical properties of cryogenic temperature structure material is fracture toughness. Research on normalization of fracture toughness test method is becoming very important issue with development of cryogenic structural elements. Specially, mechanical properties estimation by each micro-structure of welding department is important because it can cause unstable fracture when use under cryogenic environment in case of welding department. In this study, fracture toughness estimation test was carried out to unloading compliance method and sensitization heat-tread minimized test specimen at liquid nitrogen (77K), liquid helium (4K), 293K temperature to STS-316L base metal and weld metal.

Inherent and Interfacial Evaluation of Fibers/Epoxy Composites by Micromechanical Tests at Cryogenic Temperature (극저온에서의 미세역학시험법을 이용한 섬유/수지 복합재료의 계면 특성 평가)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Um, Moon-Gwang;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.11-16
    • /
    • 2011
  • Retention of interfacial shear strength (IFSS) of polymer composites at cryogenic temperature application is very important. In this work, single carbon tiber reinforced epoxy compositc was used to evaluate IFSS and apparent modulus under room and cryogenic temperatures. The property change of carbon and selected epoxy for particularly cryogenic temperature application were tested in tension and compression. Tensile strength and elongation of carbon fiber decreased at cryogenic temperature, whereas tensile modulus was almost same. On the other hand, epoxy matrix showed the increased tensile strength but decreased elongation. It can be due to maximum thermal contraction existing free volume in cryogenic temperature. IFSS increased up to $-10^{\circ}C$ and then decreased steadily. However, IFSS at cryogenic temperature was still similar to that at room temperature. This result is very useful to cryogenic application since selected epoxy toughness and interfacial adhesion can keep at such low temperature.

Development of the New Austenitic Stainless Steels by Controlling Primary Solidification Mode (초정응고 형식 제어에 의한 오스테나이트계 스테인리스 신강종의 개발)

  • 정호신
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.132-140
    • /
    • 1991
  • The aim of this study was saving of chromium and nickel content in the austenitic stainless steels, SUS 316 and SUS 321. By control of primary solidification mode, new austenitic stainless steels with good weldability, high toughness and corrosion resistance could be developed. The main results obtained were as follows; 1. Hot crack resistance of laboratory melts was good and higher than imported austenitic stainless steel. 2. Cryogenic and room temperature toughness of laboratory melts were high and laboratory melts M-7 to M-9 showed very high toughness than SUS321 imported stainless steel. 3. Intergranular corrosion resistance of laboratory melts was higher than imported stainless steels, SUS316 and SUS321. 4. By this concept of controlling primary solidification mode, could save expensive alloy additives, chromium and nickel.

  • PDF

A study on the fracture toughness evaluating method for cryogenic structural material (극저온용 구조재료의 파괴인성평가법에 관한 연구)

  • Kwon, Il-Hyun;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.64-72
    • /
    • 1998
  • This paper was undertaken to develop the fracture toughness testing method using small and single specimen compared to the conventional method in evaluating elastic-plastic fracture toughness of the superconducting magnet structural material at cryogenic temperature. The elastic-plastic fracture toughness test was conducted by using the unloading compliance method recommended by ASTM E813-89 to accomplish the above purpose. And, the 20% side-grooved 0.5TCT and 1TCT specimens were used to evaluate the fracture toughness by using as possible as miniaturized CT specimen. The unloading compliance method was a very useful method in evaluating elastic-plastic fracture toughness at cryogenic temperature. It could be taken valid fracture toughness values by using 20% side-grooved 0.5TCT specimen recommended by ASTM E813-89.

The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments (극저온 환경에서 에폭시 접착제의 물성 향상을 위한 나노 보강재의 표면 개질에 관한 연구)

  • Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • The strength of adhesive joints employed in composite structures under cryogenic environments, such as LNG tanks, is affected by thermal residual stress generated from the large temperature difference between the bonding process and the operating temperature. Aramid fibers are noted for their low coefficient of thermal expansion (CTE) and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, electrospun meta-aramid nanofiber-reinforced epoxy adhesive was fabricated to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperatures. The CTE of the nanofiber-reinforced adhesives were measured, and the effect on the adhesion strength was investigated at single-lap joints under cryogenic temperatures. The fracture toughness of the adhesive joints was measured using a Double Cantilever Beam (DCB) test.

A study on the fracture toughness degradation in cryogenic structural material using single-specimen method (단일 시험편법에 의한 극저온용 구조재료의 파괴인성 저하에 관한 연구)

  • Kwon, Il-hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.343-351
    • /
    • 1998
  • This paper was investigated degradation of the fracture toughness caused by sensitizing heat-treatment of the cryogenic structural material JN1 base metal using unloading compliance method reported as useful a method in evaluating the elastic-plastic fracture toughness at cryogenic temperature. The specimens used in this paper were 20% side-grooved 0.5T-CT specimens which were machined in the JN1 base metal. Also, to investigate cryogenic fracture toughness of the fusion line region in the JN1 GTA weldments, it was also used 20% side-grooved 0.5T-CT specimens that was machined fusion line to located in the middle of the specimen. The cryogenic fracture toughness values of the JN1 base metal were significantly decreased with increasing the time and temperature of the heat treatment. The fracture toughness value obtained from the fusion line specimen was invalid, but it was lower value than that of the JN1 base metal. Especially, this value was approximately equal with that obtained from the JN1 650.deg. C-5h heat-treated material.

Welding Characteristics of Recently Developed 9% Ni Steel (최근 9%Ni강의 용접특성)

  • 이종봉;한재광
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.34-45
    • /
    • 1995
  • 9%Ni강은 1944년 미국의 INCO(International Nickel Co., Ltd.)에 의해 최초 로 개발된 강도가 높고 용접성이 우수한 강제로서, 특히 극저온에서의 충격 인성이 우수하고 경제적으로도 유리하여 LNG 탱크 소재로서 사용한 실적이 많으며, 그동안 일본이 주축이 되어 강재의 품질개선 및 고능률.고품질의 용접기술 개발 등을 비롯 하여 탱크의 대형화 추세에 따른 안전성 확보를 위한 연구도 계속되고 있다. 이러한 추세에 동참하여 우리나라도 1993년 국산의 9%Ni강을 성공적으로 개발하게 되었고, 그 품질특성에 대해서도 국내외에 발표되었으나 여건이 미비하여 현재 국내에서 건설 중인 탱크의 소재로서는 공급되지 못하였다. 그러나 최근에 개발된 국산 강제는 자체 시험결과 뿐 아니라 외국 유수 연구기관의 시험결과에서도 각종 품질특성이 선진 제품 과 동등 이상으로 우수함이 입증되어, 가까운 장래 건설예정인 국내공사에는 물론 해외에서도 사용될 것으로 기대되고 있다. 따라서 본 해설은 향후 국내외의 LNG 수요 를 고려할 때 대형 저장탱크의 건설이 활발해 질 것으로 전망됨에 따라 9%Ni강의 현황 과 함께 최근 개발된 국산 강재의 용접특성에 대하여 소개하고자 한다.

  • PDF

The effection of alloying elements on welding characteristics of stainless steel (스테인리스강의 용접 특성에 미치는 합금원소의 영향)

  • 정호신;배동수;엄동석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • Stainless steel are widely applicable in various engineering fields for its exellent corrosion and impact ressistance. Austenitic weld metal has some ferrite for preventing solidification cracking by ASME specification. Several family of austenic stainless steel contains varying ferrite contents. But ferrite in austenic stainless steels is adversely affect weld metal toughness and since fully austenic grades are known to have good toughness. Austenic stainless steel has various alloying addition for improving corrosion resistance, impact toughness and solidification crack resistance. The effect of various alloying elements are not found to be clear in present. From this view of point, this study tried to establish the criteria of alloy design for austenic stainless steel by controlling primary solidification mode and clarifying the effect of several alloying elements.

  • PDF

A Study on Structural Characteristics of SM490A TMC Thick Steel Plates (SM490A TMC 후판강재의 소재 및 용접부 특성에 관한 연구)

  • Kim, Jong Rak;Park, Yang Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.331-339
    • /
    • 2003
  • The study discussed in this paper investigated the material characteristics for the Thermo-Mechanical Control Process(TMCP) plates, which are controlled by several factors such as rolling, cold-stripping, cooling rate, and fixed carbon quantity. The suitability of thick TMCP steel plates as structural steel was also estimated through several experiments and with the us of a statistical method to analyze mill certificate sheets provided by the manufacturer. The results of this study are as follows: the TMCP steel plates showed stable values of the composition parameter ($P_cm$) and the carbon equivalents ($C_eq$ ) with satisfied yield strength, ultimate strength, and low-yield ratio.