• Title/Summary/Keyword: 극배치 제어기

Search Result 45, Processing Time 0.022 seconds

Adaptive Fuzzy Controller Design Using Pole Assignment Compansator (극배치 보상기를 가진 적응 퍼지 제어기의 설계)

  • Choi, Chang-Ho;Hong, Dae-Seung;Ryu, Chang-Wan;Jeon, Sang-Yeong;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.862-864
    • /
    • 1999
  • Adaptive Fuzzy control system is very powerful in nonlinear system, but That system require exactly membership function and parameter. If the membership function and parameter are not exact, the system will generate chattering. Using the Pole assignment compensator can remove the chattering and steepest descent method can reduce the convergence time. In this Paper, this algorithm applicate to the Inverted pendulum, so save proof of algorithm that is to be vigorous.

  • PDF

An Indirect Adaptive Pole placement Controller Using a Discrete Adaptive Observer with Exponenrial Data weighting (지수 함수적 가중 특성의 적응 관측기를 이용한 간접 극배치 적응 제어기)

  • Kim, Jong-Hwan;Park, Dong-Jo;Jeon, Jeong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.43-46
    • /
    • 1990
  • A general scheme for a discrete adaptive observer having exponetial weighting properties is presented for a single-input single-output linear system. In this scheme, all the past measurement data are weighted esponetially both with the weighting factor and the stable matrix F. This observer is then implemented in the design of an indirect adaptive pole placement contoller. To increase nemerical stability in getting the controller parameter, a recusive algorithm is introduced. It is shown that the overall control scheme is globally stable with the persistent excition

  • PDF

LQR Controller Design with Pole-Placement (극배치 특성을 갖는 LQR 제어기 설계)

  • Park, Mun-Soo;Park, Duck-Gee;Hong, Suk-Kyo;Lee, Sang-Hyuk;Park, Min-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.574-580
    • /
    • 2007
  • This paper deals with LQR controller design method tor system having complex poles. The proposed method is capable of systematically calculating weighting matrices based on the pole's moving-range and the relational equation between closed-loop pole(s) and weighting matrices. The method moves complex poles to complex poles or two distinct real poles. This will provide much-needed functionality to apply LQR controller. The example shows the feasibility of the proposed method.

Design of TSK Fuzzy Controller Based on TSK Fuzzy Model (TSK퍼지모델로부터 TSK퍼지제어기의 설계)

  • Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.53-67
    • /
    • 1998
  • This paper suggests a method designing the TSK fuzzy controller based on the TSK fuzzy model, which guarantees the stability of the closed loop system and makes the response of the closed loop system to be a desired one. This paper deals with the general type of TSK fuzzy model of which consequents are affine equations having a constant term. The TSK fuzzy controller suggested in this paper is designed by using the pole placement which developed for the linear systems and makes the closed loop system have the same behavior as a desired linear system. A reference input can be introduced to the suggested TSK fuzzy controller and an integral action also can be introduced. Simulation results reveal that the suggested methods are practically feasible. This paper deals with both the continuous systems and the discrete systems.

  • PDF

A Study on the Direct Pole Placement PID Self-Tuning Controller design for DC Servo Motor Control (직류 서어보 전동기 제어를 위한 직접 극배치 PID 자기동조 제어기의 설계)

  • Rhee, Kyu-Young;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.327-331
    • /
    • 1989
  • This paper concerned about a study on the direct pole placement PID self-tuning controller design for Robot manipulator control system. The method of a direct pole placement self-tuning PID control for a DC motor of robot manipulator tracks a reference velocity in spite of the parameters uncertainties in nonminimum phase system. In this scheme, the parameters of controller are estimated by the recursive least square(RLS) identification algorithm, the pole placement method and diophantine equation. A series of simulation in which minimum phase system and nonminimum phase system are subjected to a pattern of system parameter changes is presented to show some of the features of the proposed control algorithm. The proposed control algorithm which shown are effective for the practical application, and experiments of DC motor speed control for Robot manipulator by a microcomputer IRH-PC/AT are performed and the results are well suited.

  • PDF

Robust Control of Robot Manipulator using Self-Tuning Adaptive Control (자기동조 적응제어기법에 의한 로봇 매니퓰레이터의 강인제어)

  • 뱃길호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.150-155
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using digital signal processors for robot manipulators. TMS3200C50 is used in implementing real-time adaptive control algorithms provide advanced performance for robot manipulator. In this paper an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm and controller parameters are detemined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

Pole-Zero Assignment Self-Tuning Controller Using Neural Network (신경회로망 기법을 이용한 극-영점 배치 자기 동조 제어기)

  • 구영모;이윤섭;장석호;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.183-191
    • /
    • 1991
  • This paper develops a pole-zero assignment self-tuning regulator utilizing the method of a neural network in the plant parameter estimation. An approach to parameter estimation of the plant with a Hopfield neural network model is proposed, and the control characteristics of the plant are evaluated by means of a simulation for a second-order linear time invariant plant. The results obtained with those of Exponentially Weighted Recursive Least Squares(EWRLS) method are also shown.

A Study on the Robustness of a Direct Adaptive Pole-placement Controller (직접 적응 극배치 제어기의 강인성에 관한 연구)

  • Kim, Young-Jin;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.666-669
    • /
    • 1991
  • This paper deals with the robustness of a direct adaptive pole-placement control algorithm for continuous time plants with unmodeled dynamics. In this paper, least squares method is used for controller parameter adaptation and covariance matrix update equation is modified by normalizing signal to guarantee the boundedness of all signals in the closed loop system. In the proposed algorithm, no a priori knowledge is required and it is shown that persistence of excitation condition is required to ensure the stability of the closed loop system.

  • PDF

A Fixed-order Controller Design by the Approximate Pole Placement (근사 극배치 개념에 의한 고정 차수 제어기 설계)

  • Ko, Jong-Moon;Hur, Myung-Joon;Lee, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.472-474
    • /
    • 1999
  • The design procedure originally proposed by Manabe is involved, because experiences and manual skills are necessary, especially, in the case of designing low fixed-order controllers for high-order plants, and the concept of manual skills are not clearly defined. So we propose a concept and a design procedure of Approximate Pole Placement that substitute for the manual skills. And the validity of the procedure is shown by example problems. Moreover, we also propose a procedure of adding the role of improving transient response performance to the feedforward compensator that previously has only the role of tracking in steady-state the validity of the procedure is also shown by example problems.

  • PDF

A Study on Indirect Adaptive Pole Placement Controller using a Modified Least Squares Method (수정된 최소자승법을 이용한 간접 적응 극배치 제어기에 관한 연구)

  • Han, Young-Seong;Chung, Young-Joo;Nho, Tae-Seok;Cho, Kyu-Bock
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.319-322
    • /
    • 1992
  • This paper proposes indirect adaptive pole placement adaptive controller using a modified least squares method. If an adaptive controller has good performance, it is necessary that an estimator have fast convergence. This paper presents a modified least squares method which guarantees the stability of estimator and has fast convergence. In this algorithm, information on signal level is obtained from the determinent of covariance matrix and according to it, weighting factor is tuned.

  • PDF