• Title/Summary/Keyword: 그리퍼

Search Result 87, Processing Time 0.028 seconds

A Gripping System Capable of Simultaneous Implementation of Pneumatic Gripper and Vacuum Gripper Using a Single Pump (단일 펌프를 이용하여 공압 그리퍼와 진공 그리퍼의 동시 구현이 가능한 그리핑 시스템의 개발)

  • Tae Hwa Hong;Jae-Bok Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.456-462
    • /
    • 2023
  • In recent years, the use of robot arms has increased rapidly in both industrial and service applications. Unlike production sites, where only one type of gripper is used for productivity, service sites often use a tool changer to replace fingered grippers or vacuum grippers to cover various objects to be grasped. To this end, a tool changer-based pneumatic grasping system was developed in this study. In order to simultaneously use a positive pressure-based pneumatic gripper and a negative pressure-based vacuum gripper, a small vane pump capable of generating positive and negative pressures depending on the direction of rotation was developed. Experiments with actual prototypes have shown that the pneumatic system based on the developed vane pump can effectively realize both pneumatic grippers and vacuum grippers.

Optimal Design of a Magnetorheological Haptic Gripper Reflecting Grasping Force and Rolling Moment from Telemanipulator (원격조작기의 악력과 회전모멘트를 고려한 MR 햅틱 그리퍼의 최적설계)

  • Nguyen, Quoc-Hung;Oh, Jong-Seok;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.459-467
    • /
    • 2012
  • In this work, the configuration of a haptic gripper featuring magnetorheological(MR) brakes is proposed and an optimal design of the MR brakes for the haptic griper is performed considering the required braking torque, the uncontrollable torque(zero-field friction torque) and mass of the brakes. Several configurations of MR brake is proposed such as disc-type, serpentine-type and hybrid-type. After the configurations of the MR brakes are proposed, braking torque of the brakes is analyzed based on Bingham rheological model of the MR fluid. The zero-field friction torque of the MR brakes is also analyzed. An optimization procedure based on finite element analysis integrated with an optimization toolbox is developed for the MR brakes. The purpose of the optimal design is to find optimal geometric dimensions of the MR brake structure that can produce the required braking torque and minimize the mass of the MR brakes. In addition, the uncontrollable torque of the MR brakes is constrained to be much smaller than the required braking torque. Based on the developed optimization procedure, optimal solution of the proposed MR brakes are achieved and the best MR brake is determined. The working performance of the optimized MR brake is then investigated.

Development of hybrid interfacial structure on wet surfaces for robotic gripper applications (젖은 표면 파지용 로봇 그리퍼 응용을 위한 하이브리드 계면 구조 개발)

  • Kim, Da Wan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.685-690
    • /
    • 2022
  • Recent research on soft adhesives has sought to understand in depth how their chemical or mechanical structures interact strongly with living tissues. The aim is to optimally address the unmet needs of patients with acute or chronic diseases. Synergy adhesion, which includes both electrostatic (hydrogen bonds) and mechanical interactions (capillary stress), appears to be effective in overcoming challenges related to long-term unstable bonds to wet surfaces. Here, we report electrostatic and mechanically synergistic mechanisms of adhesion without chemical residues. To infer the mechanism, a thermodynamic model based on custom combination adhesives has been proposed. The model supported experimental results that thermodynamically controlled swelling of hydrogels embedded in elastomeric structures improves biofluidic insensitive on-site adhesion to wet surfaces and improves detachment without chemical residues in the direction of peeling.