A hypernetwork is a generalized hypo-graph and a probabilistic graphical model based on evolutionary learning. Hypernetwork models have been applied to various domains including pattern recognition and bioinformatics. Nevertheless, conventional hypernetwork models have the limitation that they can manage data with categorical or discrete attibutes only since the learning method of hypernetworks is based on equality comparison of hyperedges with learned data. Therefore, real-valued data need to be discretized by preprocessing before learning with hypernetworks. However, discretization causes inevitable information loss and possible decrease of accuracy in pattern classification. To overcome this weakness, we propose a novel feature-wise L1-distance based method for real-valued attributes in learning hypernetwork models in this study. We show that the proposed model improves the classification accuracy compared with conventional hypernetworks and it shows competitive performance over other machine learning methods.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.5
/
pp.567-575
/
2020
As online social networks are used as a critical medium for modern people's information sharing and relationship, their users are increasing rapidly every year. This not only increases usage but also surpasses the existing media in terms of information credibility. Therefore, emerging marketing strategies are deliberately attacking social networks. As a result, public opinion, which should be formed naturally, is artificially formed by online attacks, and many people trust it. Therefore, many studies have been conducted to detect agents attacking online social networks. In this paper, we analyze the trends of researches attempting to detect such online social network attackers, focusing on researches using social network graph characteristics. While the existing content-based techniques may represent classification errors due to privacy infringement and changes in attack strategies, the graph-based method proposes a more robust detection method using attacker patterns.
The objective of this research is to discover the rule of gameplay related to the task interdependence to analyse the behavior pattern of social gameplay. Previous literatures related to the gameplay were reviewed and game which was suitable for the gameplay of the task interdependence was selected. A party-play includes a team of five people in the experiment during the gameplay with think-aloud method and video/audio data about action protocol and verbal report were collected. The video observation and protocol analysis were conducted to analyse data. The objective coding scheme were developed from consolidated sequence model task analysis. The player's behavior was analysed. The result was revealed that four rules and four modified rules were included into the total eight behavior pattern. A behavior graph integrated with five gameplay was written. The excellent cooperative spot and error and failure place could be identified. The social gameplay behavior graph is expected to be the key practical design guideline on whether the level design and balance design are proper.
Proceedings of the Korea Inteligent Information System Society Conference
/
2006.06a
/
pp.245-254
/
2006
지능형 에이전트와 규칙기반 시스템을 이용해 보다 지능적안 웹 환경을 구축하고자 하는 노력이 시맨틱 웹의 발전과 함께 증가하고 있다. 이러한 에이전트와 규칙기반 시스템에 필요한 규칙들을 이미 많은 지식들이 산재해 있는 웹으로부터 습득 할 수 있다면 보다 효율적으로 시스템을을 구축하는 것이 가능하며, 이러한 응용시스템의 확장은 시맨틱 웹의 발전을 더욱 가속화하는 계기가 될 수 있을 것이다. XRML 방법론은 웹으로부터 규칙을 습득하기 위한 단계적 방법을 제시하고 있으며, 온톨로지를 이용함으로써 규칙의 구성 요소들을 자동으로 추출할 수 있도록 지원한다. 그러나 추출된 규칙구성요소들을 조합하여 완전한 규칙을 만드는 과정이 규칙관리자의 수작업에 의존하고 있다. 본 연구는 온톨로지와 그래프 탐색 을 사용함으로써 이과정을 자동화하고자 하는 연구이다. 온톨로지에 있는 규칙의 일반적 패턴을 기반으로 하여 그래프 탐색을 이용해 규칙구성요소들을 조합함으로써 웹 페이지로부터 자동으로 규칙을 추출할 수 있다.
본 연구에서는 HMM(Hidden Markov Model) 및 Levelbuilding 알고리즘을 이용하여 인식대상 음소열의 표본 집합(훈련패턴 집합)을 입력으로 하는 음성의 자동 분할 시스템을 구현하였다. 본 시스템은 자연스럽게 발음되어진 연결음 음성으로부터 표준 음소모델을 생성한다. 본 시스템의 구성은 초기화 과정, HMM학습과정 그리고 Levelbuilding을 이용한 분리 및 CLustering 과정으로 구성되어 있다. 초기화 과정에서는 제어 정보를 이용하여 훈련패턴 집합으로부터 초기 음소 집합 군을 생성한다. Levelbuilding을 이용한 분리 및 Clustering 단계에서는 음소 모델과 제어 정보를 이용하여 훈련패턴들을 음소 단위로 분리하고, 분리된 후보 음소들을 Clustering하여 음소집합 군을 생성한다. 음소모델의 구성에 변화가 없을 때까지 이 작업을 반복 수행하여 최적의 음소모델을 생성한다. 본 연구에서는 3개 이하의 숫자단어로 구성된 연결되어 음성 패턴을 대상으로 실험하였다. 연결단어에 대한 음소의 표준모델 생성과정에서 가장 중요한 처리인 훈련패턴의 자동분할 과정을 분석하기 위하여 각 반복과정에서 분리된 정보를 그래프로 도시화하여 확인하였다.
본 논문에서는 문자인식, 손등 정맥 인식 등에 이용할 수 있는 패턴인식 기법으로 입력된 패턴을 전 처리하여 세선화한 후 유일성이 보장되는 행렬로 변환하는 방법에 관하여 연구 하였다. 입력된 패턴을 세선화 한 후 노드 중심으로 노드에 연결된 에지의 체인 코드와 유크리디안 거리를 노드를 중심으로 가중치와 체인코드를 이용한 행렬을 생성하고, 생성된 행렬의 고유치를 이용하여 인식의 기본 도구로 사용하였다. 이 때 연결된 에지의 방향 코드는 설정된 문턱치 값을 초과하는 변곡에 대하여 새로운 노드를 생성하였다. 이러한 방법을 손등 정맥 패턴 인식에 적용한 결과 인식률이 매우 우수함을 확인할 수 있었다.
With the rapidly growing amount of information represented in RDF format, efficient querying of RDF graph has become a fundamental challenge. SPARQL is one of the most widely used query languages for retrieving information from RDF dataset. SPARQL is not only simple in its syntax but also powerful in representation of graph pattern queries. However, users need to make a lot of efforts to understand the ontology schema of a dataset in order to compose a relevant SPARQL query. In this paper, we propose a graph query formulation and processing scheme based on ontology schema information which can be obtained by summarizing RDF graph. In the context of the proposed querying scheme, a user can interactively formulate the graph queries on the graphic user interface without making efforts to understand the ontology schema and even without learning SPARQL syntax. The graph query formulated by a user is transformed into a set of class paths, which are stored in a relational database and used as the constraint for search space reduction when the relational database executes the graph search operation. By executing the LUBM query 2, 8, and 9 over LUBM (10,0), it is shown that the proposed querying scheme returns the complete result set.
In this paper an embedding algorithm based on commute time is implemented by organizing patches according to the graph-based metric, and its performance is analyzed by comparing with the results of principal component analysis embedding. It is usual that the dimensionality reduction be done within some acceptable approximation error. However this paper shows the proposed manifold embedding method generates the intrinsic geometry corresponding to the signal despite severe approximation error, so that it can be applied to the areas such as pattern classification or machine learning.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.5
/
pp.37-47
/
2013
Text Mining is a research area of retrieving high quality hidden information such as patterns, trends, or distributions through analyzing unformatted text. Basically, since text mining assumes an unstructured text, it needs to be represented as a simple text model for analyzing it. So far, most frequently used model is VSM(Vector Space Model), in which a text is represented as a bag of words. However, recently much researches tried to apply a graph-based text model for representing semantic relationships between words. In this paper, we survey research trends of graph-based text representation models for text mining. Additionally, we also discuss about future models of graph-based text mining.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.798-801
/
2015
센서 레지스트리 시스템(SRS, Sensor Registry System)은 이기종 센서 네트워크에서 끊김 없는 의미 처리를 위하여 사용자에게 센서 정보를 제공한다. 불안정한 네트워크 상황에서의 원활한 서비스 제공을 위하여 빠른 근거리 사용자 이동 경로 예측 알고리즘(FCR, Fast and Close-Range Prediction) 기반의 SRS가 연구되었다. 이 연구는 경로 예측 기반의 SRS에서 이용되는 FCR 알고리즘이 지니는 한계를 극복하기 위하여 3-간선 패턴(TEP, Three-Edge Pattern) 기반의 경로 예측 알고리즘을 제안한다. TEP 알고리즘은 경로를 그래프로 표현할 때 사용자의 위치를 기준으로 이전 간선, 현재 간선, 다음 간선으로 패턴화 하여 학습하고, 이 패턴을 기반으로 하는 사용자의 이동 경로를 예측한다. 또한 실험 및 비교 평가에서, TEP 알고리즘이 FCR 알고리즘에 비해 높은 정확성을 지님을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.