• Title/Summary/Keyword: 균질 혼합 모델

Search Result 28, Processing Time 0.025 seconds

Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석)

  • Choi, Mingi
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.

A Study of Transonic Premixed Combustion in a Diverging Channel Using Asymptotic Analysis (점근해석을 이용한 확대형 채널 내의 천음속 예혼합 연소에 관한 연구)

  • Lee, Jang-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.75-83
    • /
    • 2005
  • A steady transonic dilute premixed combustion in a diverging channel is investigated by using asymptotic analysis. This model explores the nonlinear interactions between the near-sonic speed of the flow, the small changes in geometry from a straight channel, and the small heat release due to the one-step first-order Arrhenius chemical reaction. The reactive flow is described by a nonhomogeneous transonic small-disturbance (TSD) equation coupled with an ordinary differential equation for the calculation of the reactant mass fraction in the combustible gas. Also the asymptotic analysis reveals the similarity parameters that govern the reacting flow problem. The results show the complicated nonlinear interaction between the convection, reaction, and geometry effects and its effect on the flow behavior.

Homogenization of Plastic Behavior of Metallic Particle/Epoxy Composite Adhesive for Cold Spray Deposition (저온 분사 공정을 위한 금속입자/에폭시 복합재료 접착제의 소성 거동의 균질화 기법 연구)

  • Yong-Jun Cho;Jae-An Jeon;Kinal Kim;Po-Lun Feng;Steven Nutt;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.199-204
    • /
    • 2023
  • A combination of a metallic mesh and an adhesive layer of metallic particle/epoxy composite was introduced as an intermediate layer to enhance the adhesion between cold-sprayed particles and fiber-reinforced composites (FRCs). Aluminum was considered for both the metallic particles in the adhesive and the metallic mesh. To predict the mechanical characteristics of the intermediate bond layer under a high strain rate, the properties of the adhesive layer needed to be calculated or measured. Therefore, in this study, the Al particle/epoxy adhesive was homogenized by using a rule of mixture. To verify the homogenization, the penetration depth, and the thickness decrease after the cold spray deposition from the undeformed surface, was monitored with FE analysis and compared with experimental observation. The comparison displayed that the penetration depth was comparable to the diameters of one cold spray particle, and thus the homogenization approach can be reasonable for the prediction of the stress level of particulate polymer composite interlayer under a high strain rate for cold spray processing.

Stress Intensity Factors of Center Cracked Laminated Composites under Uniaxial Tension (단순인장을 받는 복합 적층재 중앙균열의 응력확대계수)

  • 김성호;오재협;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1611-1619
    • /
    • 1991
  • 본 연구에서는 Hilton과 Sih의 경우를 확장 적용하여 Fig. 1(b)와 같이 탄성 층 내부에 존재하는 중앙균열선단의 응력확대계수 산출을 위하여 균열부위를 제외하고 는 섬유층과 레진층이 완전히 접착되었다고 가정한 모델을 다음과 같이 설정하였다. 중앙균열을 내재하고 있는 복합재료의 역학적 거동을 해석하기 위하여, 접착레진을 주 로하는 층(resin rich layer)을 중심으로 하여 상하 각1개의 섬유 (fiber)층과 균질한 특성을 갖는 복합재료의 층으로 단순화 하였으며, 이러한 단순화는 적층재에서의 균열 주위의 국부응력을 해석하기 위한 것으로서 복합재료는 레진층이나 섬유층에 비하여 매우 두꺼우므로 반무한체로 이상화 하였다. 선형탄성 이론에 의하여 혼합 경계조건 문제(mixed boundary value problem)로 부터 제2종 Fredholm적분방정식(fredholm int- egral equation of a second kind)을 유도하였으며 수치해석적인 방법에 의하여 응력 확대계수를 구하였다.

CAVITATION FLOW ANALYSIS OF 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석)

  • An, S.J.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.20-24
    • /
    • 2011
  • In this paper, numerical simulation of cavitation flow for modified NACA66 hydrofoil was made by using the multi-phase RANS equation based on pseudo-compressibility. The Homogeneous mixture model comprised of the mixture continuity, mixture momentum and liquid volume fraction equations was utilized. A vertex-centered finite-volume method was used in conjunction 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing The Spalart-Allmaras one equation model was employed for the closure of turbulence. Reasonable agreements were obtained between the calculation results and the experiment for pressure coefficients on the hydrofoil surface.

  • PDF

Numerical Analysis for Booster Effect in DME HCCI Engine with Fuel Stratification (연료의 불균질성을 갖는 DME HCCI엔진에서 과급의 효과에 관한 수치해석)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.19-25
    • /
    • 2010
  • The purpose of this study is to gain a better understanding of the effects of fuel stratification on reducing the pressure-rise rate at high load in HCCI combustion. It was found that fuel stratification offers good potential to achieve a staged combustion event and reduced pressure-rise rates. The engine is fueled with Di-Methyl Ether (DME) which has unique 2-stage heat release. Numerical analysis is conducted with single and multi-zones model and detailed chemical reaction scheme is done by chemkin and senkin. Calculation result shows that proper fuel stratification prolongs combustion duration and reduce pressure rise rate. Besides IMEP, combustion efficiency and indicated thermal efficiency keep constant. However, too wide fuel stratification increases pressure rise rate and CO and NOx emissions in exhaust gas.

Effect of β-Carotene and Vitamin C on Chlorophyll-Induced Photooxidation (클로로필의 광산화에 미치는 β-카로텐과 비타민 C의 영향)

  • Ryu, Seung-Hee;Lee, Hye-Suk;Lee, Young-Soon;Kwon, Tai-Wan;Song, Young-Sun;Moon, Gap-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.1
    • /
    • pp.99-106
    • /
    • 2005
  • Skin is continously exposed to ultraviolet (UV) radiation, the major cause of skin disorders including skin aging. Chlorophylls were well known as photosensitizer initiating subsequent chemical reactions such as photooxidative deterioration of cellular structures. This experiment was designed to elucidate the effects of $\beta$-carotene and ascorbic acid with chlorophylls on UVB-induced photooxidation in linoleic acid emulsion model system and skin homogenate of ICR mouse. In linoleic acid emulsion model system, the addition of chlorophyll and $\beta$-carotene accelerated the photooxidation, while high concentration of ascorbic acid prevented. The combination of chlorophylls, $\beta$-carotene and ascorbic acid, which concentrations are simplified from mustard leaf kimchi, prevented UVB-induced photooxidation. Although single treatment of $\beta$-caretene accelerated photooxidaiton, $\beta$-caretene acted as antioxidant in the combination with ascorbic acid. Similarly the addition of individual chlorophylls and $\beta$-carotene accelerated the UVB-induced photooxidation in skin homogenate of ICR mouse. 50 ppm of ascorbic acid did not show the any preventive effect, however 500 ppm of ascorbic acid effectively prevented the oxidation. Photooxidation was prevented in the combination of chlorophylls and $\beta$-carotene with 500 ppm of ascorbic acid and concentration rate of ascorbic acid plays an important role in the prevention of UVB-induced photooxidation.

Use of a Temperature as a Tracer to Study Stream-groundwater Exchange in the Hyporheic Zone (열추적자를 이용한 지하수-하천수 혼합대 연구)

  • Kim, Kue-Young;Chon, Chul-Min;Kim, Tae-Hee;Oh, Jun-Ho;Jeoung, Jae-Hoon;Park, Seung-Ki
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.525-535
    • /
    • 2006
  • A study on stream-groundwater exchange was performed using head and temperature data of stream water, streambed, and groundwater. Groundwater level and temperature were obtained from multi-depth monitoring wells in small-scale watershed. During the summer and winter season, time series of temperature data at streambed and groundwater were monitored for six months. In the winter time, we measured the temperature gradient between stream water and streambed. The observed data showed three typical types of temperature characteristics. First, the temperature of streambed was lower than that of stream water; second, the temperature of streambed and stream water was similar; and the last, the temperature of streambed was higher than that of stream water. The interconnections between the stream and the streambed were not homogeneously distributed due to weakly developed sediments and heterogeneous bedrock exposed as bed of the stream. The temperature data may be used in formal solutions of the inverse problems to estimate groundwater flow and hydraulic conductivity.

A Study on the Performance of Catalysts for the Recombination of Oxyhydrogen Gas Generated in Secondary Battery (이차전지내 발생하는 수소-산소 혼합기체 재결합용 촉매의 성능 측정 및 이론적 모델 연구)

  • Kim, Yong-Sik;Chang, Min-Hwan;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • The performance of catalysts for the recombination of oxyhydrogen gas was measured and compared with the results obtained from theoretical model. The oxyhydrogen gas was generated by the electrolysis cell and recombined through the fixed bed catalytic reactor. The yield that is the ratio of water-amount produced to the water-amount consumed in the electrolysis cell was increased with the increase of KOH concentration in electrolysis cell and the applied current. The catalyst 1 showed the best performance and the yield was under 60 %. The faradic yield calculated by Faraday's law showed about 100% in maximum with catalyst 1. The production rate of water generated by the recombination was 5-40 g/day dependent on the flow rate of mixed gas. Considering the results calculated from the pseudo-homogeneous catalytic reactor model, the hot point inside the reactor was moved to the direction of outlet and the maximum temperatures were $440-480^{\circ}K$ when the gas flow rate increased. The production rate of water calculated from the theoretical model showed good agreement with experimental results below the flow rate of $0.5cm^3/sec$, but there were much differences above that flow rate.

Numerical Investigation of Cavitation Flow Around Hydrofoil and Its Flow Noise (수중익형 주변 유동장에서의 공동현상과 유동소음에 대한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung;Park, Warn-Gyu;Seol, Hanshin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.141-147
    • /
    • 2016
  • Underwater cavitation is one of the most important issues because it causes not only vibration and erosion of submerged bodies but also significant flow noise problems. In this paper, flow noise due to cavitation flows around the NACA66 MOD hydrofoil is numerically investigated. The cavitation flow simulation is conducted using the Reynolds-Averaged Navier-Stokes equations based on finite difference methods. To capture the cavitation phenomena accurately and effectively, the homogeneous mixture model with the Merkle's cavitation model is applied. The predicted results are compared with available experimental data in terms of pressure coefficients and volume fraction, which confirms the validity of numerical results. Based on flow field analysis results, hydro-acoustic noise field due to the cavitation flow is predicted using the Ffowcs-Williams and Hawkings equation derived from the Lighthill's acoustic analogy. The typical lift dipole propagation patterns are identified.