• Title/Summary/Keyword: 균질혼합 모델

Search Result 28, Processing Time 0.023 seconds

CAVITATION FLOW SIMULATION FOR A 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석)

  • Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • In this paper, the cavitating flows around a hydrofoil have been numerically investigated by using a 2-d multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. The phase change rate between the liquid and vapor phases was determined by Merkle's cavitation model based on the difference between local and vapor pressure. Steady state calculations were made for the modified NACA66 hydrofoil at several flow conditions. Good agreements were obtained between the present results and the experiment for the pressure coefficient on a hydrofoil surface. Additional calculation was made for cloud cavitation around the hydrofoil. The observation of the vapor structure, such as cavity size and shape, was made, and the flow characteristics around the cavity were analyzed. Good agreements were obtained between the present results and the experiment for the frequency and the Strouhal number of cavity oscillation.

불포화 층상 해안 대수층 내에서의 밀도 의존적 지하수 유동 및 염분 이동에 대한 유한 요소 모델링

  • 정병주;김준모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.342-346
    • /
    • 2002
  • 불포화 층상 해안 대수층 내에서의 밀도 의존적 지하수 유동 및 염분 이동에 대한 연구를 위해 하나의 지하수 유동-용질 이동 연동 수치 모델이 제시되었다. 이 수치 모델은 밀도 의존적 지하수 유동 지배 방정식, 염분 이동 지배 방정식 및 농도와 밀도의 관계식, 그리고 유한 요소법에 기초하여 개발되었다. 서로 다른 두가지 성질의 불포화 대수층이 고려되었다. 하나는 사질토층 위에 점토층이 존재하는 층상 대수층이고, 다른 하나는 사질토층과 점토층이 혼합된 두가지 물질로 구성된 균질화된 대수층이다. 수치모델의 결과는 층상 불균질성 (layered heterogeneity)가 해안 대수층 내에서의 밀도의존적 지하수 유동과 염분 이동에 있어서 매우 중요한 역할을 하고 있음을 보여준다. 그러한 층상 불균질성의 효과는 사질토층과 점토층과의 현저한 수리학적 및 수리역학적 성질의 차이에 기인한다 따라서 실제 해안 대수층 내에서 관찰되는 점토층을 적절히 고려하는 것이 보다 합리적고 타당한 해안 대수층내에서의 밀도 의존적 지하수 유동 및 염분 이동 해석을 가능하게 할 것이다.

  • PDF

A COMPUTATIONAL STUDY ABOUT BEHAVIOR OF AN UNDERWATER PROJECTILE USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 수중 운동체의 거동에 관한 수치적 연구)

  • Jo, S.M.;Choi, J.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.15-23
    • /
    • 2016
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the underwater platform. Various flow conditions were considered to analyze the fluid-dynamics motion parameters of the projectile. The water level of platform and the current speed around the projectile were the main parametric variables. The numerical calculations were conducted up to 0.75sec in physical time scale. The dynamics tendency of the projectile was almost identical with respect to the water level variation due to the constant buoyancy term. The moving speed of the projectile along the vertical axis inside the platform decreased when the current speed increased. This is because the inflow from outside of the platform impeded development of the compressed air emitted from the floor surface of the launch platform. As a result, the fluid force acting on the lower surface of the projectile decreased, and injection time of the projectile from the platform was delayed.

Numerical Analysis for the Characteristic Investigation of Homogenization Techniques Used for Equivalent Material Properties of Functionally Graded Material (기능경사 소재 등가 물성치 예측을 위한 균질화 기법의 특성분석을 위한 수치해석)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Shin, Dae-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Graded layers in which two different constituent particles are mixed are inserted into functionally graded material such that the volume fractions of constituent particles vary continuously and functionally over the entire material domain. The material properties of this dual-phase graded region, which is essential for the numerical analysis of the thermo-mechanical behavior of FGM, have been predicted by traditional homogenization methods. But, these methods are limited to predict the global equivalent material properties of FGMs because the detailed geometry information such as the particel shape and the dispersion structure is not considered. In this context, this study intends to investigate the characteristics of these homogenization methods through the finite element analysis utilizing the discrete micromechanics models of the graded layer, for various volume fractions and external loading conditions.

The Study on the Recovery of Volatile Organic Components by Pervaporation (Pervaporation을 이용한 휘발성 유기성분 회수에 관한 연구)

  • 김희진;송영석;민병렬
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.51-62
    • /
    • 1999
  • The recovery of trace volatile organic components from water by pervaporation was investigated. Permeation experiments through homogeneous polydimethylsiloxane(PDMS) membrane was carried out and the effect of feed concentrations and membrane thicknesses on the permeation characteristics were investigated. A solution-diffusion model is used to describe the pervaporation transport mechanism. In homogeneous PDMS membrane it appeared that the selectivities of MEK and toluene are constant, and that organic flux has a linear relationship with feed concentration. These results indicate that the coupling effects between organics were negligible. The selectivity of PDMS membranes is invariant with respect to the membrane thickness. The intrinsic membrane permeability of organic components determined by using a solution-diffusion model. Comparing with various composite type membrane, the membrane using PEG treated nonwoven fabric as sublayer showed the best performance in VOC recovery by pervaporation.

  • PDF

Comparative Numerical Analysis of Homogenized and Discrete-Micromechanics Models for Functionally Graded Materials (기능경사재를 위한 균질화와 이산화-미시역학 모델에 대한 비교 수치해석)

  • Ha, Dae-Yul;Lee, Hong-Woo;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.399-404
    • /
    • 2000
  • Functionally graded materials(FGMs) involve dual-phase graded layers in which two different constituents are mixed continuously and functionally according to a given volume fraction. For the analysis of their thermo-mechanical response, conventional homogenized methods have been widely employed in order to estimate equivalent material properties of the graded layer. However, such overall estimations are insufficient to accurately predict the local behavior. In this paper, we compare the thermo-elastic behaviors predicted by several overall material-property estimation techniques with those obtained by discrete analysis models utilizing the finite element method, for various volume fractions and loading conditions.

  • PDF

CAVITATION FLOW ANALYSIS OF 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석)

  • An, S.J.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.20-24
    • /
    • 2011
  • In this paper, numerical simulation of cavitation flow for modified NACA66 hydrofoil was made by using the multi-phase RANS equation based on pseudo-compressibility. The Homogeneous mixture model comprised of the mixture continuity, mixture momentum and liquid volume fraction equations was utilized. A vertex-centered finite-volume method was used in conjunction 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing The Spalart-Allmaras one equation model was employed for the closure of turbulence. Reasonable agreements were obtained between the calculation results and the experiment for pressure coefficients on the hydrofoil surface.

  • PDF

An Analytical Study on the Condensation of Submerged Vapor Jets in Subcooled Liquids (과냉수에서의 증기응축제트에 대한 해석적 연구)

  • 김기웅;이계복;김환열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.333-340
    • /
    • 1999
  • A numerical study of turbulent condensing vapor jet submerged in subcooled liquids has been conducted. A physical model of the process is presented employing the locally homogeneous flow approximation of two phase flow in conjunction with a $\kappa$-$\varepsilon$-g model of turbulence properties. In this model the turbulence is represented by differential equations for its kinetic energy and dissipation. A differential equation for the concentration fluctuations is solved and a clipped normal probability distribution function is proposed for the mixture fraction. Effects of steam mass flux, pool temperature and nozzle internal diameter on the condensing vapor jet are also analyzed. The model is evaluated using existing data for turbulent condensing vapor jets. The agreement between the predictions and the available experimental data is good.

  • PDF

Numerical Prediction of elastic Material Properties of Composites by A Constrained Nonlinear Optimization Method (구속적 비선형 최적화에 의한 합성재료 탄성물성치의 수치적 예측)

  • 신수봉;고현무
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-232
    • /
    • 1997
  • Material properties of a new composite composed of components with known material properties are usually investigated through experiments. Elastic modulus and Poisson's ratio are measured at various volume fractions of mixed components and utilized as the base information on an analytical model for predicting the mechanical behaviors of a structure constructed by the composite. Elastic material properties of a composite at various volume fractions are numerically estimated by minimizing the error between the static displacements computed from a model for the composite and those computed from a model of homogeneous and isotropic material. A finite element model for a composite is proposed to distribute different types of material components easily into the model depending on the volume fraction. Then, the material properties of a composite filled with solid mircospheres are predicted numerically through a sample study and the estimated results are compared with experimental results and some theoretical equations.

  • PDF