• Title/Summary/Keyword: 균주선발

Search Result 800, Processing Time 0.025 seconds

Biodegradation of 4-t-Octylphenol by Basidioradulum molare and Schizopora paradoxa and Estrogenecity Reduction of its Metabolites (옥틸페놀(4-t-Octylphenol)의 Basidioradulum molare와 Schizopora paradoxa에 의한 분해 및 에스트로겐성 저감효과)

  • Lee, Soo-Min;Ku, Bon-Wook;Lee, Jae-Won;Choi, Don-Ha;Jeung, Eui-Bae;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.27-35
    • /
    • 2004
  • Recalcitrant 4-t-Octylphenol used as a surfactant was subjected to the biodegradation with wood rot fungi, Basidioradulum molare and Schizopora paradoxa. Two fungi were grown in the culture medium containing various concentrations of 4-t-Octylphenol in order to investigate their resistance against 4-t-octylphenol Schizopora paradoxa was reached to the full growth within 14 incubation days in the concentration of more than 200 ppm of 4-t-Octylphenol, while Basidioradulum molare showed the inhibitory mycelium growth as the concentration was increased Schizopora paradoxa and Basidioradulum molare biodegraded 95% and 36% of initial concentration of 4-t-Octylphenol at first incubation day, respectively. However, the biodegradation capability reached to more than 95% after 3 incubation days. During the biodegradation of 4-t-Octylphenol, the activity of manganese dependent peroxidase was induced by the addition of 4-t-Octylphenol in the culture medium of Schizopora paradoxa, but that of laccase was maximal before the addition. The reduction of estrogenecity was assayed by MCF-7 cell proliferation test and measurement of pS2 mRNA expression. The level of pS2 mRNA was decreased down to the level of baseline at first incubation day. Also, estrogenecity of 4-t-Ocrylphenol completely disappeared after treatment with supernatant by Schizopora paradoxa and Basidioradulum molare from first incubation day of culture down to the levels of vehicle.

Development of an Efficient Method of Screening for Watermelon Plants Resistant to Fusarium oxysporum f. sp. niveum (수박 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Jo, Eun Ju;Lee, Ji Hyun;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.409-419
    • /
    • 2015
  • This study was conducted to establish an efficient screening method for watermelon plants resistant to Fusarium wilt (FW), which is caused by Fusarium oxysporum f. sp. niveum (Fon). An HA isolate was prepared from a wilted watermelon plant in Haman-gun and identified as F. oxysporum f. sp. niveum based on morphological characteristics, molecular analyses of ITS (internal transcribed spacer) and TEF (translation elongation factor $1{\alpha}$) sequences, and host specificity on cucurbits including watermelon, melon, oriental melon, and cucumber. The assay for disease response of watermelon differentials indicated that the HA isolate was race 0. Among seven liquid media tested, the highest amount of Fon spores was produced from V8-juice broth, which was selected as a medium for mass production of Fon. The disease assay for 21 watermelon and 11 watermelon-rootstock cultivars demonstrated that 20 watermelon cultivars except for 'Soknoranggul' were susceptible; 'Soknoranggul' was moderately resistant. All the tested rootstock cultivars were highly resistant to the HA isolate. The evaluation of disease development depending on various conditions suggested that an efficient screening method for FW resistance in watermelon plants is to dip the roots of 10-day-old seedlings in spore suspension of $1.0{\times}10^5-1.0{\times}10^6conidia{\cdot}mL^{-1}$ for 30 min., to transplant the seedlings to plastic pots with a fertilized soil, and then to cultivate the plants at $25^{\circ}C$ for 3 weeks.

Physico-chemical characteristics and ${\beta}-galactosidase$ activity of Lactobacillus plantarum from kimchi (김치에서 분리한 유산균 Lactobacillus plantarum의 이화학적 특성 및 ${\beta}-galactosidase$ 활성)

  • Kang, Mi-Seon;Rhee, Young-Hwan
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.54-59
    • /
    • 1996
  • Three strains of inhibitory lactic acid bacteria (No. 49, No. 61, No. 75) against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escheirchia coli(ATCC33694) and Bacillus subtilis(ATCC6633) were isolated from kimchi, and then, identified to be Lactobacillus plantarum after examinations of their biological and physiological characteristics. To investigate a possible application of these three lactobacilli in milk fermentation industry, we made yogurts and then evaluated their ${\beta}-galactosidase$ activities at various; incubation time(from 24 hrs to 72 hrs). The result of experiment was that ${\beta}-galactosidase$ activities were reached maximum at 48 hrs and that reduced gradually with the lapse of time. And the ${\beta}-galactosidase$ activity of lactobacilli, and their viable cell counts at $37^{\circ}C$ for 2 hrs under various pH conditions were investigated. ${\beta}-galactosidase$ activities of 3 strains were reduced 50% at pH 3.5, but there were no remaining activities at pH 2.5, and pH 1.5, respectively. The frequency of the survival cell of lactobacilli in yogurt were $0.12{\sim}0.75%$ at pH 2.5, $$6.3{\times}10^{-5}{\sim}2.7{\times}10^{-3}% at pH 1.5, respectively, but there was no significant difference at pH 3.5. The values of original pH, titratable acidity as lactic acid, viscosity, and viable cells of yogurts were $4.08{\sim}4.30,\;1.05{\sim}1.25%,\;1,818{\sim}2,124\;cps\;and\;7.3{\times}10^8{\sim}3.0{\times}10^9\;cfu/m{\ell}$, respectively. To estimate buffer capacity of yogurt, the volume of 1.0 N HCl to 2 unit below original pH of yogurt($100\;m{\ell}$) was $11.98{\sim}13.02\;m{\ell}$ and the volume of 1.0N NaOH to 4 unit above original pH of yogurt($100\;m{\ell}$) was $10.82{\sim}12.86\;m{\ell}.

  • PDF

Formulation of Bacillus amyloliquefaciens A-2 and Its Efficacy to Control Tomato Leaf Mold Caused by Fulvia fulva (길항세균 Bacillus amyloliquefaciens A-2를 이용한 토마토 잎곰팡이병 방제용 미생물 제제)

  • Kong, Hyun-Gi;Chun, Ock-Joo;Choi, Ki-Hyuck;Lee, Kwang-Youll;Baek, Joung-Woo;Kim, Hyun-Ju;Murugaiyan, Senthilkumar;Moon, Byung-Ju;Lee, Seon-Woo
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • This study was performed to develop a formulation using an antagonistic bacterium Bacillus amyloliquefaciens A-2 to control tomato leaf mold caused by Fulvia fulva. B. amyloliquefaciens A-2 was grown in a medium with rice oil and mixed with various carrier and additives. One of the formulations, A2-MP, showed the best disease control value among the tested formulations. The disease control value of A2-MP at 100-fold and 500-fold diluted treatment was not significantly different from that of chemical fungicide triflumizole in a growth chamber. Although disease control effect was decreased by serial diluted treatment of the prepared A2-MP, 1,000-fold diluted treatment of A2-MP still showed high disease control value of 72.0%. For the green house experiments, the disease control values of A2-MP was indicated as 79.4% which is similar to that of chemical fungicide, triflumizole showing 79.6%. When the disease control activity of the formulation A2-MP was compared in tomato production conditions, disease control values of 100-fold diluted A2-MP and 3,000 fold diluted triflumizole exhibited 60%, 81.6%, respectively. The disease control efficiency by A-2MP was 73% of the disease control value of chemical fungicide. The formulation A-2MP maintained the stable bacterial viability and disease control activity when stored at $4^{\circ}C$. This result suggested that A-2MP develped from B. amyloliquefaciens A-2 could be used to control tomato leaf mold.

α-Glucosidase inhibitory activity and protease characteristics produced by Bacillus amyloliquefaciens (Bacillus amyloliquefaciens로부터 생산된 protease 특성 및 α-glucosidase 저해활성)

  • Lee, Rea-Hyun;Yang, Su-Jin;Hwang, Tae-Young;Chung, Shin-Kyo;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.727-734
    • /
    • 2015
  • In this study, three GRAS (generally recognized as safety) strain was isolated from Doenjang and Cheonggukjang and identified as a protease-producing microorganism, following the appearance of a clear zone around its colony when cultured on a medium containing skim milk. Based on an analysis of the nucleotide sequence of 16S ribosomal RNA, the strains wereas identified as Bacillus amyloliquefaciens and wereas therefore named Bacillus amyloliquefaciens CDD5, Bacillus amyloliquefaciens CPD4, and Bacillus amyloliquefaciens CGD3. Here, we analyzed the protease and ${\alpha}$-glucosidase inhibitory activities of the three B. amyloliquefaciens strains. Among the isolated strains, B. amyloliquefaciens CGD3 exhibited the highest protease activity (9.21 U/mL, 24 hr). The protease activities of B. amyloliquefaciens CDD5 and B. amyloliquefaciens CPD4 reached 1.14 U/mL and 8.02 U/mL, respectively, at 48 hr. The proteases from the three B. amyloliquefaciens strains showed the highest activities within a pH range of 8.0-9.0 at $50^{\circ}C$, and casein was found to be the preferred substrate on evaluating enzyme activity in the substrate specificity assay. The B. amyloliquefaciens strains exhibited maximal growth when the nutrient broth medium had an initial pH within the range of 5.0-10.0, 6-9% sodium chloride (NaCl), and 5% glucose. B. amyloliquefaciens CDD5 exhibited a low ${\alpha}$-glucosidase inhibition rate (5.32%), whereas B. amyloliquefaciens CPD4 and B. amyloliquefaciens CGD3 exhibited relatively higher inhibition rates of 96.89% and 97.55%, respectively.

Effect of Proteinase Activity on the Cheddar Cheese Quality (단백분해 효소 활성(蛋白分解 酵素 活性)이 Cheddar Cheese의 품질(品質)에 미치는 영향(影響))

  • Kim, Min-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.157-164
    • /
    • 1996
  • This study aimed increase the quality during ripening of Cheddar cheese made with proteinase-negative mutant of Streptococcus lactis KCTC 1913 selected by curing. The degradation of protein during cheese ripening were investigated by electrophoresis and chromatography. The results were summarized as follow ; 1. The number of lactic acid bacteria decreased with the ripening stage, and that of the control cheese decreased faster than that of the cheese made with mutant. 2. Polyacrylamide gel electrophoretic analysis of cheese caseins revealed no difference between the cheese made with mutant and the control cheese, but differences along with the ripening stage were evident. 3. On Sephadex G-25 column chromatography, the extracts of bitter components from the green cheese and 3 month ripended cheese were fractionated into 3 fractions. With the progress of ripening, bitter peptides were degraded to rather small peptides or free amino acids. 4. Sensory evaluation of the 3 month ripended Cheddar cheese found no significant differences in color but the cheese made with mutant evidenced higher palatability in flavor and better texture than the control cheese. 5. The yields of the cheddar cheese made with mutant was 0.14% higher than that of the control cheese.

  • PDF

The production of riboflavin by Ashbya gossypii JAG-13 (Ashbya gossypii JAG-13 변이주에 의한 riboflavin의 생산)

  • Shim, Moon-Bo;Yum, Sung-Kwan;Kim, Man-Keun;Bang, Won-Gi
    • Applied Biological Chemistry
    • /
    • v.36 no.5
    • /
    • pp.332-338
    • /
    • 1993
  • For the production of riboflavin, strain development of Ashbya gossypii NRRL Y-1056 was attempted by NTG(N-methyl-N'-nitro-N-nitrosoguanidne) treatment. The optimum composition of culture medium and other culture conditions for the production of riboflavin by selected mutant Ashbya gossypii JAG-13 were determined. The optimum composition of medium was 9% of corn oil, 3% of gellatone, 4% of CSL, 0.3% of glycine, 0.2% of S770. The optimum culture temperature and initial pH of medium was $28^{\circ}C$ and 6.5, respectively. oxygen was essential for the production of riboflavin, but excess oxygen inhibit the production of riboflavin. When Ashbya gossypii JAG-13 was cultured under above conditions for 12 days with a bioreactor, 6.9 mg/ml of riboflavin was produced.

  • PDF

벙커-C유 분해미생물의 선발 및 현장 생리적용성 검정

  • Park, Jin-Hui;Kim, Yeong-Sik;Lee, Tae-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.600-604
    • /
    • 2003
  • This study pointed at isolation of bunker-C oil degrading bacteria and then estimation of it's degrading capability in environmental conditions. Degradation ratio of the excellent isolate was appeared to 40.5% and 44.7% when the oil was treated to 1% and 5%, respectively. The isolate was identified to Acinetobater calcoaceticus SEBCM. In pH test, high degrading effect was appeared to about 73% at pH 6 and pH 7, and low degrading ratio was 37% at pH 4. Its growth condition at temperature has not large variation in $15^{\circ}C\;{\sim}30^{\circ}C$, Quantity of nitrogen for it's good growth was ranged of $0.5\;g/L{\sim}2\;g/L$. As these results, we realized that this isolate have good activity when treated to $15\;{\sim}30^{\circ}C$ of temperature and $6{\sim}7$ of pH.

  • PDF

Development of Transgenic Soybean Using Agrobacterium tumefaciens (Agrobacterium tumefaciens을 이용한 대두 형질전환체 개발)

  • Cho, Mi-Ae;Choi, Dong-Woog;Liu, Jang-Ryol;Clemente Tom;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.255-259
    • /
    • 2004
  • Agrobacterium tumefaciens-mediated cotyledonary node transformation was used to produce transgenic soybean. Cotyledonary node explants of three cultivars and one genotype were co-cultivated with strains Agrobacterium (LBA4404, GV3101, EHA101, C58) containing the binary vectors (pCAMBIA3301 and pPTN289) carrying with CaMV 35S promoter-GUS gene as reporter gene and NOS promoter-bar gene conferring resistance to glufosinate (herbicide Basta) as selectable marker. There was a significant difference in the transformation frequency depend on bacteria strain. The EHA101 strain of the bacterial strains employed gave the maximum efficiency (3.6%). One hundred-six lines transformed showed the resistance in glufosinate. Histochemical GUS assay showed that at least 11 plants transformed with the GUS gene were positive response. The soybean transformants were obtained from the Thorne (5 plants), 1049 (5 plants) and Bakun (1 plant), respectively. Southern blot analysis and leaf painting assay revealed that the GUS and bar gene segregated and expressed in their progeny.

Studies on the Selection of Microorganism for Food Wastes and Optimization of Fermentation Process (음식물찌꺼기 소멸효율 재고를 위한 발효균 및 발효 공정 최적화 연구)

  • Kim, Young-Kwon;Hong, Myung-Pyo;Kim, Myung-Jin;Hong, Suk-Il;Park, Myung-Suk;Kim, Jong-Suk;Chang, Ho-Geun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.95-112
    • /
    • 1998
  • For the effective disposal of organic food wastes, we seleted 4 strains of microorganism from 186 microbial candidate via enzyme activity test, salt tolerance, food decomposition rate, stability and safety of strains. The identity of these 4 strains are as follows : Fungi is Rhizopus sp., yeasts are Galactomyces sp., Pichia sp. and Hyphopichia sp., In the 50L fermenter scale, we tested various fermenting factor for the optimization of conditions of food waste decomposition using 4 selected strains. The optimum fomenting conditions were as follows : BIO-CHIP Volume 25-30 L, BIO CHIP size 2.0-6.0mm, air flow 200-280L/min, mixing intensity 2-4rpm, temperature $30-45^{\circ}C$. In these fermenting conditions, the efficiency of decomposition(rate of weight loss of food wastes) were 93%. Also the quality of fermenting output were assayed at the basis of fertilizer, and the results were as good as general compost.

  • PDF