• Title/Summary/Keyword: 균일 열유속

Search Result 48, Processing Time 0.029 seconds

Application of CFD Simulation to Cooling System Design of Agricultural Products Processing Center Workplace (농산물산지유통센터 작업장의 냉방 설계를 위한 CFD 시뮬레이션 적용)

  • Kwon, Jin-Kyung;Lee, Sung-Hyun;Moon, Jong-Pil;Lee, Su-Jang;Kim, Keyong-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.195-202
    • /
    • 2010
  • Cooling air-conditioning of APC (Agricultural Products processing Center) workplace is important to improve the working environment in the summer season. As existing cooling systems for air-conditioning of whole workplace are inefficient because of their high equipment operating costs, relatively inexpensive cooling system is required. The objectives of this study were to simulate the thermal flow fields in APC workplace having the positive and negative pressure type fan and pad systems and spot cooling system by using CFD software (FLUENT, 6.2) and estimate the cooling effectiveness of respective cooling systems. The results showed that the negative pressure type fan and pad system was inappropriate for the present APC workplace because of excessive outside air influx from open gateway and the positive pressure type fan and pad system created relatively low temperature field but non-uniform velocity field at worker positions. The spot cooling system could supply cool air to worker positions with relatively constant air velocity and temperature.

A Study on the Performance of Boiling Beat Transfer of Inclined Thermosyphon Heat Exchangers with Internal Grooves (경사 열사이폰 열교환기의 비등열전달 성능에 관한 연구)

  • Cho, Dong-Hyun;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.202-209
    • /
    • 2005
  • This study concerns the performance of boiling heat transfer in inclined thermosyphons with internal grooves. A study was carried out with the performance of the heat transfer of the inclined thermosyphon having 60 internal grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Distilled water, methanol and ethanol have been used as the working fluid. The inclination angle, three working fluids, heat flux and the boiling heat transfer coefficient at the evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20%$ in plain thermosyphon. The high heat transfer coefficient was found between $25^{\circ}$ and $30^{\circ}$ of inclination angle for water and between $20^{\circ}$ and $25^{\circ}$ for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves.

  • PDF

Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet(I) (원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성)

  • Lee, Chang-Ho;Kim, Yeong-Seok;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.386-398
    • /
    • 1998
  • The present experiment is conducted to investigate heat transfer characteristics on the impinging surface with secondary flows around circular nozzle jets. The changed vortex pattern around jet affects significantly the flow characteristics and heat transfer coefficients on the impinging surface. The effects of the jet vortex control are also considered with jet nozzle-to-plate distances and main jet velocities. The vortex pattern around a jet is changed from a convective instability to an absolute instability with a velocity suction ratio of the main jet and the secondary counterflow. With the absolute instability condition, the jet potential core length increases and the heat transfer on the impinging surface is increased by small scale eddies. The region of high heat transfer coefficients is enlarged with the high Reynolds number due to increasing secondary peak values. The effect of suction flows is influenced largely with collars attached the exit of the jet nozzle because the attached collar guides well the counterflow around the main jet.

A Study on the Heat Transfer Phenomena in Coiled Tubes with Variable Curvature Ratios (곡률비가 다양한 코일 튜브에서의 열전달현상에 관한 연구)

  • Han, Kyuil;Park, Jong-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1509-1520
    • /
    • 1998
  • An experiment was carried out for the fully developed turbulent flow of water in tube coils on the condition of uniform heat flux. The present work was conducted for various ranges for Dean number(1794~1321), Prandtl number (2.5~4.5), curvature ratio parameters (22~60). Heat transfer to steady viscous flow in coiled tubes of circular cross section was studied for fully developed velocity and temperature fields under the thermal boundary condition of uniform heat flux. The peripherally local Nusselt number correlated as a function of Dean and Prandtl numbers. We studied the flow in heat coiled tubes under the influence of both centrifugal and buoyancy forces in order to gain insight into the flow pattern. In the present study, we obtained three emperical formulas, $Nu_v=0.0231Re^{0.84}Pr^{0.4}(a/R)^{0.13}$ (vertical) $Nu_c=0.0241Re^{0.86}Pr^{0.4}(a/R)^{0.08}$ (corrugated) $Nu_h=0.0227Re^{0.84}Pr^{0.4}(a/R)^{0.09}$ (horizontal).

Numerical Analysis of Heat Transfer in Pulsating Turbulent Pipe Flow (원관내 맥동난류유동에서의 열전달 수치해석)

  • 박희용;이관수;김창기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1282-1289
    • /
    • 1990
  • A numerical solution for heat transfer of pulsating turbulent pipe flow was presented under the condition of fully developed dynamic regime and uniform well heat flux. The k-.epsilon. turbulent model was adopted to describe turbulent characteristics. The results were given at following conditions ; Time-averaged Reynolds number equal to 10000 ; Strouhal number ranged from 0.0005 to 0.05 ; The peak velocity fluctuation varied from 20 to 80 percent of the mean velocity. It was found that the effect of pulsation on local heat transfer rate is greater at downstream than upstream and the heat transfer was increased or decreased according to the pulsating conditions.

Study on forced convective heat transfer in helically ceiled tubes (나선코일튜브내의 강제대류 열전달에 관한 연구)

  • 한규일;박종운;임태우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.282-291
    • /
    • 1998
  • Heat transfer performance are studied for the turbulent flow of water in 3 smooth tube coils having ratios of coil to tube diameter of 16, 21 and 27, and a corrugated-coiled tube having a ratio of coil to tube diameter of 29, for Reynolds numbers from 8000 to 60000 and is also compared with the limited results available to data. The experiments are carried out for the fully developed turbulent flow of water in tube coils under the condition of uniform heat flux. This work is limited 0 tube coils of R/a between 10 and 30. The tube having a ratio of coil to tube diameter of 27 among the 3 smooth tube coils shows the best heat transfer performance. The performance of coiled tube best transfer performance. The performance of coiled tube with a similar curvature ratio is better for a corrugated-coiled tube(R/a=17) than for a smooth coiled tube(R/a=16). An empirical relation which correlates most of the data within $\pm$25% was also developed. Test result shows that the Nusselt number is found to be affected by a secondary flow due to curvature.

  • PDF

Numerical Analysis of Natural Convection in Room Fire (화재실내 자연대류의 수치해석)

  • Jung Gil-Soon;Lee Seung-Man;Lee Byung-Kon
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.18-25
    • /
    • 2005
  • In this study, numerical analysis of two-dimensional unsteady natural convection of air in a square enclosure heated from below, was performed as a basic research of fire science. SIMPLE algorithm was used to the pressure term of momentum equations in the numerical analysis. The numerical analysis were studied for the two model cases and two heat conditions, respectively, which are different with insulation of enclosures and position of heat applied. Also, the ceiling temperatures of enclosure were measured to compare the accuracy of numerical analysis, and it is found that the temperature predicted by numerical analysis were agreed well with the measurements. Streamline and isotherm of the each model case were acquired for each time step.

A study on the forced convection heat transfer in the vertical copper tube at uniform wall heat flux (균일한 열유속에서의 수직동관내의 강제대류 열전달에 관한 연구)

  • Baek, Go-Gil;Cha, Ji-Yeong;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.4
    • /
    • pp.213-220
    • /
    • 1979
  • A number of methods has been developed for calculation of heat transfer in the vertical round tube under conditions of forced convection with uniform heat flux at wall. I would like to express hereby one of applications of this study in the design of heat exchanger instruments for water flow at $15.8^{\circ}C(p_r=8)$ used frequently in our daily life. Also all the results are investigated for forced convective heat transfer in the case of heated water-flow at uniform wall heat flux in the vortical round copper tube, where the ratio of length to diameter will be 44. They are well in agreement with Gratz and Kraussold equation respectively in laminar and transition flow range. In turbulent flow in the range from Re=10,000 to 65,000, the experimental formula Is show as follows ; Nu=0.023 $R_e^{0.814}\;P_r^{0.4}$. And this is agreed with Dittus - Boelter equation when Reynolds number exponent increases from 0.80 to 0.814.

  • PDF

Environmental Prediction in Greenhouse According to Modified Greenhouse Structure and Heat Exchanger Location for Efficient Thermal Energy Management (효율적인 열에너지 관리를 위한 온실 형상 및 열 교환 장치 위치 개선에 따른 온실 내부 환경 예측)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Seok Jun;Kim, Dae Hyun;Oh, Jae-Heun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.278-286
    • /
    • 2021
  • In this study, based on the Computational Fluid Dynamics (CFD) simulation model developed through previous study, inner environmenct of the modified glass greenhouse was predicted. Also, suggested the optimal shape of the greenhouse and location of the heat exchangers for heat energy management of the greenhouse using the developed model. For efficient heating energy management, the glass greenhouse was modified by changing the cross-section design and the location of the heat exchanger. The optimal cross-section design was selected based on the cross-section design standard of Republic of Korea's glass greenhouse, and the Fan Coil Unit(FCU) and the radiating pipe were re-positioned based on "Standard of greenhouse environment design" to enhance energy saving efficiency. The simulation analysis was performed to predict the inner temperature distribution and heat transfer with the modified greenhouse structure using the developed inner environment prediction model. As a result of simulation, the mean temperature and uniformity of the modified greenhouse were 0.65℃, 0.75%p higher than those of the control greenhouse, respectively. Also, the maximum deviation decreased by an average of 0.25℃. And the mean age of air was 18 sec. lower than that of the control greenhouse. It was confirmed that efficient heating energy management was possible in the modified greenhouse, when considered the temperature uniformity and the ventilation performance.

Heat transfer and flow characteristics of a circular jet impinging on a convex curved surface (볼록한 반구면에 충돌하는 원형제트의 열전달 및 유동특성)

  • Lee, Dae-Hui;Jeong, Yeong-Seok;Im, Gyeong-Bin;Kim, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.579-588
    • /
    • 1997
  • The heat transfer and flow measurements from a convex curved surface to a circular impinging jet have been made. The flow at the nozzle exit has a fully developed velocity profile. The jet Reynolds number (Re) ranges from 11,000 to 50,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, and the dimensionless surface curvature (d/D) from 0.034 to 0.089. The results show that the stagnation point Nusselt number (N $u_{st}$ ) increases with increasing value of d/D. The maximum Nusselt number at the stagnation point occurs at L/d .ident. 6 to 8 for all Re's and d/D's tested. For larger L/d, N $u_{st}$ dependency on Re is stronger due to an increase of turbulence in the approaching jet as a result of the more active exchange of momentum with a surrounding air. The local Nusselt number decreases monotonically from its maximum value at the stagnation point. However, for L/d=2 and Re=23,000, and for L/d.leq.4 and Re=50,000, the stream wise Nusselt number distributions exhibit secondary maxima at r/d .ident. 2.2. The formation of the secondary maxima is attributed to an increase in the turbulence level resulting from the transition from a laminar to a turbulent boundary layer.ndary layer.