• Title/Summary/Keyword: 균열 회전체

Search Result 10, Processing Time 0.02 seconds

Calculation of Stress Intensity Factor in a Rotor with a Breathing Crack (개폐균열을 갖는 회전체에서의 응력확대계수 계산)

  • 전오성;이종원;엄윤용;은희준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1417-1425
    • /
    • 1991
  • 본 연구에서는 파괴역학적 개념을 도입하여 수평 회전체에 존재하는 횡방향 개폐균열의 모형을 설명하고 균열거동을 분석하였으며, 균열의 깊이, 회전속도 및 회 전방향에 따른 균열선단에서의 응력확대 계수를 계산하고 그 특성을 분석하였다.

Identification of Crack Orientation in a Simple Rotor (회전체에서의 균열 방위 결정)

  • Jun, Oh Sung;Lee, Chong-Won;Lim, Byoung Duk
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.209-214
    • /
    • 1997
  • Vibration characteristics which are typical in a cracked rotor can be utilized for detection of crack. The changing trend of harmonics at the second harmonic resonant speed according to the crack depth and the unbalance orientation has been discussed. To characterize the vibration depending on crack orientation, the unbalance and gravitational responses of the cracked rotor are calculated. An algorithm for crack orientation identification is also introduced. A trial mass is attached step by step with even angle interval along a certain circumference, and then the synchronous and second horizontal harmonic compenents of vibration are measured and curve-fitted using least square method. Numerical simulations using this method show good results.

  • PDF

Analysis of Harmonic Vibration of Cracked Rotor (균열회전체의 고조파진동 해석)

  • Jun, Oh-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.35-46
    • /
    • 2008
  • Harmonic vibration characteristics for the general rotor model having a breathing crack are analyzed. Analyses are performed at the half critical speed ranges. The vibration characteristics are explained by using the additional slope and bending moment at the crack position and the influence coefficient showing the structural dynamic characteristics of the rotor. With the low crack depth the magnitude of the additional slope is kept constant even at the speed range at which the orbit magnitude is very sensitive to the rotational speed change. At this speed range the vibration is affected by the influence coefficient only. As the dynamic bending moment exceeds the static bending moment with the increase of crack depth. the additional slope affects the vibration amplitude of cracked rotor and the crack propagation rate increases.

Modal Analysis of Rotor System with Anisotropic Stator and Asymmetric Rotor in the Presence of Breathing Crack (개폐균열이 존재하는 비대칭 회전부 및 비등방 고정부를 갖는 회전체의 모드해석)

  • Han Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.442-450
    • /
    • 2006
  • This paper describes the new modal analysis method to detect the presence of the breathing crack in a general rotor system with disk asymmetry and stator anisotropy. It is proposed that the modal analysis using directional frequency response functions (dFRFs), which, accounting for the directivity in modes, clears the heavily over-lapping of other harmonics occurring from non-isotropic properties in addition to those due to crack, can provide an effective method to detect the modes by a crack. The simulations from the simple general rotor model show that the r-dFRFs (reverse dFRFs) for asymmetry confirms a good indicator of the presence of the breathing crack and the instability is primarily influenced by the shaft asymmetry than the breathing crack.

Finite Element Analysis of a Rotating Disc with a Corner Crack Originating at the Bolt Holes (회전체 원판의 볼트구멍에 존재하는 모서리균열의 유한요소해석)

  • 한상배;이진호;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3055-3062
    • /
    • 1993
  • The objective of this paper is to obtain stress intensity factor solutions for a corner crack originating at bolt holes in a rotating disc. Initially two-dimensional finite element analyses of a rotating disc with bolt holes are performed to determine the maximum stress region. Subsequently three-dimensional finite element analyses of a rotating disc with a corner crack originating at the bolt holes are performed with a variety of crack geometries. According to the numerical results, the maximum stress intensity factor, with an increase in crack depth ratio, was observed at the surface of the plate due to the interference effect of corner crack and disc bore.

Vibration Analysis of Cracked Rotor (균열 회전체의 진동해석)

  • Jun, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.925-934
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterative method. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

  • PDF

Vibration Analysis of Flexible Rotor Having a Breathing Crack (개폐균열이 존재하는 유연 회전체의 진동해석)

  • Jun, Oh-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1137-1147
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack Position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterativemethod. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

Al-Alloy 7075-T651의 부식피로균열성장 거동에 관한 연구(II) -주기 하중 파형의 영향-

  • 김봉철;강봉수;한지원;우흥식
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.9-14
    • /
    • 1998
  • 고강도 알루미늄 합금은 기술의 진보에 따라서 이용도가 높은 매우 중요한 재료로서, 잘 알려진 적용분야로서는 항공우주산업, 고속회전체, 항공기용재 등으로 많이 사용되고 있다. 고강도 알루미늄 합금은 Al-Cu-Mg(2000 series)를 기초로 둔것과 Al-Zn-Mg-Cu(7000 series)를 기초로 둔 것등이 있다. (중략)

  • PDF

The Energy Release Rate for Cracks in a Rotating Continuum (균열을 내재한 회전체의 에너지방출률)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.330-337
    • /
    • 1995
  • For a rotating body with cracks, the new energy release rate equation is presented. The derived equation is different from the other researcher's results. It is a path-independent integral which excluded the derivatives of displacements near the crack tip, thereby improving the numerical accuracy of the energy release rate computation. Moreover, as the equation was derived on basis of the energy principle and non-linear elasticity without assumptions, it can applied to the cracked body with arbitrary shape under elastic-plastic deformation. Several examples are treated to demonstrate the efficiency and accuracy of the proposed method compared to existing methods.

Fatigue Life Evaluation of Turbine Shaft Using Applied Shaft Stress (회전체 스트레스 정보를 이용한 터빈 축 피로수명 평가)

  • Jin, Byeong Kyou;Park, Ki Beom;Chai, JangBom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • The equipment or with a constant torque and a variable stress due to axial vibration such as the turbine-generator system in nuclear power plant show the fatigue fracture behavior. Thus this study whoul aim to measure the torsional stress and analyze the fatigue fracture behavior. To achieve this, we manufactured the equipment similar with turbine-generator system and applied various torsional vibration stress due to external load. In particular, the evaluation was conducted with the existing evaluation methods of the fatigue behavior of known stress-life, strain-life, crack growth assessment methods. With increasing the external load and independent methods tends to decrease the fatigue life was confirmed up to 10 times in 5 kV external load compared to without external load.