최근 도로균열 탐지에 대한 많은 연구에서 딥러닝 기반의 접근법을 활용하면서 과거 알고리즘 기반의 접근법을 활용한 연구들보다 높은 성능과 성과를 보이고 있다. 그러나 딥러닝 기반의 많은 연구가 여전히 균열의 유형을 분류하는 것에 집중되어 있다. 균열 유형의 분류는 현재 수작업에 의존하고 있는 균열탐지 프로세스를 획기적으로 개선해 줄 수 있다는 점에서 상당한 기대를 받고 있다. 그러나 실제 도로의 유지보수 작업에 있어서는 균열의 유형뿐만 아니라 균열의 심각도에 관한 판단이 필수적이지만, 아직까지 도로균열 탐지와 관련된 연구들이 균열의 심각도에 대한 자동화된 산출까지 진전되지 못하고 있다. 균열의 심각도를 산출하기 위해서는 균열의 유형과 이미지 속 균열의 부위가 함께 파악되어야 한다. 본 연구에서는 균열 유형과 균열 부위의 동시적 탐지를 효과적으로 자동화하기 위해 딥러닝 기반의 객체탐지 모델인 Mobilenet-SSD를 활용하는 방법을 다루고 있다. 균열탐지의 정확도를 개선하기 위해 U-Net을 활용해 입력 이미지를 자동 분할하고, 이를 객체탐지 기법과 결합하기 위한 여러 실험을 진행하여 그 결과를 정리하였다. 결과적으로 U-Net을 활용한 이미지 의 자동 마스킹을 통해 객체탐지의 성능을 mAP 값이 0.9315가 되도록 향상시킬 수 있었다. 본 연구의 결과를 참고하여 도로포장 관리시스템의 구현에 균열탐지 기능의 자동화가 더욱 진전될 수 있다고 기대된다.
본 논문에서는 노후화된 목조·석조 건축물의 균열을 탐지하는 기법을 소개한다. 본 기법의 목적은 석조·목조 문화재의 시간의 흐름에 따른 관리 소홀, 균열(벌레, 날씨, 기온 등), 배부름 현상에 의한 문화재의 손상을 사전에 방지하기 위함이다. 기존에 존재하는 목조·석조 건축물의 균열, 노후, 배부름 등 다양한 결함과 변형의 탐지 방법은 접촉식 센서를 이용하여 탐지를 해왔지만, 문화재 자체의 미관을 해칠 뿐 아니라 문화재를 추가로 훼손할 가능성이 있다는 문제점이 제시되었다. 이 문제를 해결하기 위해 문화재 비 접촉형 탐지 기법을 사용한다. CCTV 및 DSLR과 같은 관측장비로 촬영한 영상정보를 기반으로 문화재의 결함과 변형을 AI 영상분석 기반 방법으로 판단하는 문제를 제안한다.
인코넬600 합금을 열처리상태 및 변형속도등이 서로 다른 응력부식균열(SCC) 발생 조건하에서 정변형속도 시험법으로 인장시켜 그때 발생되는 AE신호와 부식전류를 측정하여 균열거동과 비교하므로서 SCC 발생 및 진전을 AE로서 적절히 탐지할 수 있는가를 연구하였다. 그 결과 SCC. 연성파괴 및 기계적인 변형에서 발생되는 AE는 amplitude 준위에 의해 식별가능하며, 이것은 AE amplitude 준위가 AE발생원을 식별할 수 있는 중요한 변수가 될 수 있음을 의미한다. 또한 AE 발생시점과 전기 화학적 전류변동이 들 일치하는 것으로 나타나 입계응력부식 균열 진전이 AE에 의해 적절히 탐지될 수 있음을 알 수 있다.
본 연구에서는 비지도 이상 탐지 방법을 변형한 U-Net 기반의 이미지 복원 기법을 통해 한정적인 데이터를 활용한 균열 탐지 방안을 제안한다. 콘크리트 균열은 다양한 원인으로 인해 발생하며, 장기적으로 구조물의 심각한 손상을 초래할 수 있는 요소이다. 일반적으로 균열 조사는 검사원의 육안으로 판단하는 외관 검사법을 사용하는데, 이는 판단에 객관성이 떨어지며 인적 오류 발생 가능성이 크다. 따라서 객관적이고 정확한 이미지 분석 처리를 통한 방법이 요구된다. 최근에는 균열을 신속하고 정밀하게 탐지할 수 있도록 딥러닝을 활용한 기술들이 연구되고 있다. 하지만 일반적인 균열자료에 비해 점검 대상물에 대한 데이터는 한정적이므로 이를 활용한 기존 균열 탐지 모델의 성능은 제한적인 경우가 많다. 따라서 본 연구에서는 비지도 이상 탐지 방법을 사용해 점검 대상물에 대한 데이터를 증강하여 해당 데이터를 사용하여 학습한 결과, 정확도 98.78%, 조화평균(F1_Score) 82.67%의 성능을 확인하였다.
노후 선박의 증가로 선체 검사의 필요성이 높아지고 있다. 하지만 선체 벽면의 균열을 찾고 보수하는 작업은 위험성이 높고 효율성이 낮다. 이에 본 논문에서는 선체의 벽면에 진공 흡착하여 장애물에 부딪히지 않고 선체 벽면을 이동하면서 균열을 탐지하는 로봇을 개발하였다. 선체 균열탐지 로봇은 선체뿐만 아니라 사람이 직접 균열을 찾기 힘들거나 위험한 곳에 유용할 것이며 균열로 인한 선박 사고 발생을 줄여줄 것으로 기대된다.
기계구조물내의 균열은 고하중상태에서 갑작스러운 파괴의 주요 원인의 하나로서 이러한 균열의 조기탐지를 위해 기존의 비파괴검사 방법 이외에, 최근 진동측정 및 진동분석을 이용하는 방법이 경제성 및 그 효용성으로 인하여 깊게 연구되고 있다. 이러한 진동특성의 변화를 이용하여 균열을 탐지하는 방법이 많은 학자들에 의해 연구되어졌으며, 현재까지의 연구결과중 균열의 크기 및 위치를 동시에 탐지할 수 있는 방법중에서 비교적 단순, 정확하다고 판단되는 방법으로는 임의의 두 지점에서의 진폭측정을 이용한 Rizos(1)의 방법과 고유진동수 및 모우드형 측정을 이용한 Kam & Lee(2)의 방법이 있으나 이들 방법은 두가지 이상의 진동특성치를 요구하고 있다. 본 연구의 목적은 진동특성치중 고유진동수만을 이용하여 단순부재에서 균열의 크기 및 위치를 수치적으로 예측할 수 있는 새로운 해석기법을 제시하고, 기존 방법 사용시의 결과와 비교 검토하여 그 유용성을 판단하는데 있다.
아스팔트 포장의 균열은 날씨의 변화나 차량에 의한 충격으로 발생하며, 균열을 방치할 경우 포장 수명이 단축되고 각종 사고를 불러 일으킬 수 있다. 따라서 아스팔트 도로 포장의 균열을 빠르게 감지하여 보수조치를 취하기 위하여 이미지를 통해 균열을 자동으로 탐지하기 위한 연구들이 지속되어 왔다. 특히 최근들어 Convolutional Neural Network를 사용하여 아스팔트 도로 포장의 균열을 탐지하려는 모델들이 많이 연구되고 있으나, 고성능의 컴퓨팅 파워를 요구하기 때문에 실제 활용에는 한계가 있다. 이에 본 논문에서는 모바일 기기에 적용 가능한 스몰 딥러닝 모델을 적용하여 아스팔트 도로 포장의 균열을 탐지하는 모델의 개발을 위한 프레임워크를 제안한다. 사례연구를 통해 제안한 스몰 딥러닝 모델은 일반적인 딥러닝 모델들과 비교 연구되었으며, 상대적으로 적은 파라미터를 가지는 모델임에도 일반적인 딥러닝 모델들과 유사한 성능을 보였다. 개발된 모델은 모바일 기기나 IoT에 임베디드 되어 사용될 수 있을 것으로 기대된다.
피로손상이 발생하는 초기단계는 결정립계나 석출물, 그리고 잔류응력과 같은 전위(dislocation)의 이동성에 영향을 미치는 변수에 의해 지배되는 것으로 널리 알려져 있으나, 물리적으로 손상의 발생을 탐지할 수 있는 단계는 미소균열의 발생단계라 할 수 있다. 미소균열은 microcrack으로 부르는 것이 일반적이지만 피로손상의 문제에서만은 short(or small) fatigue crack으로 통용되고 있다. 따라서 미소균열 보다는 소균열 또는 피로 단균열이 더 알맞은 용어일지도 모르는데, 그 크기가 수 ${\mu}m$에서 수 mm의 범위에 걸친 균열의 총칭이다. 이러한 크기라면 대략 통상적인 비파괴시험 방법으로 탐지할 수 있는 범위의 한계 부근에 있으므로 피로손상의 탐지와 관련된 비파괴평가의 역할과 관련하여 새삼스럽게 한번 짚고 넘어가는 것도 의미 있는 일이라 생각된다. 피로와 관련하여 보고된 비파괴평가에 관한 연구는 감히 그 숫자를 헤아릴 수 없이 많으나 그 대부분은 피로균열의 성장 및 전파에 관한 것으로, 피로 단균열과 관련한 연구는 상대적으로 적으며 특히 국내에서는 거의 찾아볼 수 없다. 그러나 피로 단균열의 탐지와 관련하여 지금까지 전세계적으로 보고된 연구 결과는 다수 있으므로 여기서는 주로 비파괴평가로 볼 수 있는 연구에 대해서만 살펴보기로 한다.
빠르게 증가하는 노후 터널을 효율적으로 관리하기 위하여 최근 영상장비를 이용한 점검 방법론들이 많이 제안되고 있다. 하지만 기존의 방법론들은 대부분 국한된 영역에서 검증을 수행하였을 뿐 아니라, 다른 물체들이 존재하지 않는 깨끗한 콘크리트 표면에서 검증되어 실제 현장에 대한 적용성을 검증하기 어려웠다. 따라서 본 논문에서는 이러한 한계를 극복하기 위하여 비균열 물체 학습에 기반한 6단계 터널 균열 탐지 딥러닝 모델 개발 프레임워크를 제안한다. 제안된 프레임워크는 터널에서 취득된 이미지 내 균열 탐색, 픽셀 단위 균열 라벨링, 딥러닝 모델 학습, 비균열 물체 수집, 비균열 물체 재학습, 최종 학습 데이터 구축의 총 6단계로 이루어진다. 제안된 프레임워크를 이용하여 개발된 균열 탐지 딥러닝 모델 개발을 수행하였으며, 일반 균열 1561장, 비균열 206장으로 개별 물체 세분화(Instance Segmentation) 모델인 Cascade Mask R-CNN을 학습시켰다. 학습된 모델의 현장 적용성을 검토하기 위하여 전선, 전등 등을 포함하는 약 200m 길이의 실제 터널에서 균열 탐지를 수행하였다. 실험 결과 학습된 모델은 99% 정밀도와 92%의 재현율을 나타내며 뛰어난 현장 적용성을 나타내었다.
본 연구에서는 가중치 오차 함수를 적용하여, 미세한 콘크리트 균열을 감지하는 U-Net 모델을 만들 수 있도록 개선 방안을 제안한다. 콘크리트 균열은 안전을 위협하는 요소이기 때문에 그 상태를 주기적으로 파악하고 신속하게 초기 대응을 하는 것이 중요하다. 하지만 현재는 점검자가 직접 육안으로 검사하고 평가하는 외관 검사법이 주로 사용되고 있다. 이는 정확성뿐만 아니라 비용과 시간, 안전성 측면에서도 한계점을 가진다. 이에 콘크리트 구조물에 생성되는 미세한 균열을 신속하고 정밀하게 탐지할 수 있도록 딥러닝을 활용한 기술들이 연구되고 있다. 본 연구에서 U-Net을 활용한 균열 탐지를 시도한 결과, 미세한 균열을 탐지하지 못하는 것을 확인하였다. 이에 제시한 가중치 오차 함수를 적용하여 학습한 모델에 대해 성능을 검증한 결과, 정확도(Accuracy) 99% 이상, 조화평균(F1_Score) 89%에서 92%의 신뢰성 높은 수치를 도출해내었고, 미세한 균열을 정확하고 선명하게 탐지한 결과를 통해 학습 개선 방안의 성능을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.