DOI QR코드

DOI QR Code

A method for concrete crack detection using U-Net based image inpainting technique

  • Received : 2020.08.24
  • Accepted : 2020.09.17
  • Published : 2020.10.30

Abstract

In this study, we propose a crack detection method using limited data with a U-Net based image inpainting technique that is a modified unsupervised anomaly detection method. Concrete cracking occurs due to a variety of causes and is a factor that can cause serious damage to the structure in the long term. In general, crack investigation uses an inspector's visual inspection on the concrete surfaces, which is less objective in judgment and has a high possibility of human error. Therefore, a method with objective and accurate image analysis processing is required. In recent years, the methods using deep learning have been studied to detect cracks quickly and accurately. However, when the amount of crack data on the building or infrastructure to be inspected is small, existing crack detection models using it often show a limited performance. Therefore, in this study, an unsupervised anomaly detection method was used to augment the data on the object to be inspected, and as a result of learning using the data, we confirmed the performance of 98.78% of accuracy and 82.67% of harmonic average (F1_Score).

본 연구에서는 비지도 이상 탐지 방법을 변형한 U-Net 기반의 이미지 복원 기법을 통해 한정적인 데이터를 활용한 균열 탐지 방안을 제안한다. 콘크리트 균열은 다양한 원인으로 인해 발생하며, 장기적으로 구조물의 심각한 손상을 초래할 수 있는 요소이다. 일반적으로 균열 조사는 검사원의 육안으로 판단하는 외관 검사법을 사용하는데, 이는 판단에 객관성이 떨어지며 인적 오류 발생 가능성이 크다. 따라서 객관적이고 정확한 이미지 분석 처리를 통한 방법이 요구된다. 최근에는 균열을 신속하고 정밀하게 탐지할 수 있도록 딥러닝을 활용한 기술들이 연구되고 있다. 하지만 일반적인 균열자료에 비해 점검 대상물에 대한 데이터는 한정적이므로 이를 활용한 기존 균열 탐지 모델의 성능은 제한적인 경우가 많다. 따라서 본 연구에서는 비지도 이상 탐지 방법을 사용해 점검 대상물에 대한 데이터를 증강하여 해당 데이터를 사용하여 학습한 결과, 정확도 98.78%, 조화평균(F1_Score) 82.67%의 성능을 확인하였다.

Keywords

References

  1. Ministry of Land, Infrastructure and Transport, Detailed instructions for the safety and maintenance of facilities, 2019
  2. Kim, Ah-Ram, Kim, Donghyeon, Byun, Yo-Seph, Lee, Seong-Won, Crack Detection of Concrete Structure Using Deep Learning and Image Processing Method in Geotechnical Engineering. Journal of the Korean Geotechnical Society, 34(12), 145 -154., 2018, DOI:10.7843/kgs.2018.34.12.145
  3. Jung, Seo-Young, Yu, Jung-Ho. A Proposal of Automatic Condition Evaluation Process based on Unsupervised Learning. Proceedings of KICEM Annual Conference, pp.79-80, 2019.
  4. Lee Hoseong, Anomaly Detection Overview , https://hoya012.github.io/blog/anomaly-detection-overview-1/
  5. Oh Miae, Study on anomaly detection based on Machine Learning (Report No.2018-16), Korea Institute for Health and Social Affairs, 2018
  6. D. Carrera, G. Boracchi, A. Foi and B. Wohlberg, "Detecting anomalous structures by convolutional sparse models," 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, 2015, pp. 1-8, doi: 10.1109/IJCNN.2015.7280790.
  7. Kang, Eunsuk, U-NET, https://modulabs-biomedical.github.io/U_Net
  8. Exxact Corporation, Atrous Convolutions & U-Net Architectures for Deep Learning: A Brief History, https://blog.exxactcorp.com/atrous-convolutions-u-net-architectures-for-deep-learning-a
  9. Seo, Wonju, UNET, https://wewinserv.tistory.com/30
  10. Olaf Ronneberger, Philipp Fischer, Thomas Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," MICCAI, 2015. DOI: 10.1007/978-3-319-24574-4_28
  11. Caglar Firat Ozgenel, Concrete Crack Segmentation Dataset, https://data.mendeley.com/datasets/jwsn7tfbrp/1#file-52a39c5f-6914-4e26-88e7-ec81bfbc938e
  12. Kim Chungyun, Evaluation Method of Classification Model, https://velog.io/@skyepodium/%EB%B6%84%EB%A5%98-%EB%AA%A8%EB%8D%B8-%ED%8F%89%EA%B0%80-%EB%B0%A9%EB%B2%95

Cited by

  1. 딥러닝 기술을 이용한 캐비테이션 자동인식에 대한 연구 vol.58, pp.2, 2020, https://doi.org/10.3744/snak.2021.58.2.105
  2. SKU-Net: Improved U-Net using Selective Kernel Convolution for Retinal Vessel Segmentation vol.26, pp.4, 2020, https://doi.org/10.9708/jksci.2021.26.04.029