• Title/Summary/Keyword: 균열 저감

Search Result 248, Processing Time 0.018 seconds

Dispute Issues and Improvement of Inter-layer Joints in Apartment Houses (공동주택 층간이음부의 분쟁 쟁점 및 개선 방안)

  • Bang, Hong-Soon;Bae, In-ho;Kim, Ok-Kyue
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.129-139
    • /
    • 2021
  • Recent rise in the supply rate of new public apartment houses leads to an increasement in disputes regarding the construction quality of the apartments between the residents and the construction companies. According to the dispute cases filed for claiming the collective defect repair fees, inter-layer concrete joints turned out to be the most frequently disputed item. For this reason, this study selects the inter-layer concrete joints to further analyze the primary causes and details of each dispute case. From the results of this study, three primary causes of the disputes are found, which are 1) the absence of standard specifications for construction quality control and management after construction; 2) the absence of established standards for repair when construction defects are found; and 3) the fact that the court grants generous compensation for disputes concerning the apartment houses. In order to prevent construction defects in inter-layer concrete joints, this study provides three suggestions including 1) the current standard specifications for inter-layer concrete joints should be further specified by the Ministry of Land, Infrastructure and Transport; 2) a construction defect should be judged according to the compliance to the standard specifications; and 3) a clear and institutional protocol needs to be established for defect repair in cases that new public apartment houses have been judged to have defects.

Classification of cold regions and analysis of the freeze-thaw repetition cycle based on heat transfer quantity by freezing test (실내동결시험을 통한 열류량 분석에 따른 동결-융해 조건 분석 및 한랭지역의 분류)

  • An, Jai-Wook;Seo, Jeong-Eun;Jung, Min-Hyung;Seong, Joo-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.957-972
    • /
    • 2018
  • Tunnels constructed in cold regions can cause serious defects such as cracks and leaks due to external temperature changes in the portals and vents. In order to prevent the freezing damage of the tunnel, appropriate measures should be applied to the section where the freeze damage is concerned. However, the specific criteria and contents for judging whether or not the anti-freeze measures are applied are not presented. In this study, the laboratory freezing tests on the temperature changes of the concrete specimens under freezing conditions were carried out. And the freeze-thaw repetition cycle (F), which can judge the possibility of freezing damage, were presented based on the heat transfer quantity (W) by experimental results of case studies. Also, we propose a classification of cold regions considering the climatic characteristics of Korea for using it to efficient design and maintenance.

Thermodynamic Evaluations of Cesium Capturing Reaction in Ceramic Microcell UO2 Pellet for Accident-tolerant Fuel (사고저항성 핵연료용 세라믹 미소셀 UO2 소결체의 Cs 포집반응에 대한 열역학적 평가)

  • Jeon, Sang-Chae;Kim, Keon Sik;Kim, Dong-Joo;Kim, Dong Seok;Kim, Jong Hun;Yoon, Jihae;Yang, Jae Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • As candidates for accident-tolerant fuels, ceramic microcell fuels, which are distinguished by their peculiar microstructures, are being developed; these fuels have $UO_2$ grains surrounded by cell walls. They contribute to nuclear fuel safety by retention of fission products within the $UO_2$ pellet, reducing rod pressure and incidence of SCC failure. Cesium, a hazardous fission product in terms of amount and radioactivity, can be captured by chemical reactions with ceramic cell materials. The capture-ability of cesium therefore depends on the thermodynamics of the capturing reaction. Conversely, compositional design of cell materials should be based on thermodynamic predictions. This study proposes thermodynamic calculations to evaluate the cesium capture-ability of three ceramic microcell compositions: Si-Ti-O, Si-Cr-O and Si-Al-O. Prior to the calculations, the chemical and physical states of the cesium and the cell materials were defined. Then, the reactivity was evaluated by calculating the cesium potential (${\Delta}G_{Cs}$) and oxygen potential (${\Delta}G_{O_2}$) under simulated LWR circumstances of normal operation. Based on the results, cesium capture is expected to be spontaneous in all cell compositions, providing a basis for the compositional design of ceramic microcell fuels as well as a facile way for evaluating cesium capture.

An Experimental Study on the Mechanical Properties and Long-Term Deformations of High-Strength Steel Fiber Reinforced Concrete (고강도 강섬유보강 콘크리트의 역학적 특성 및 장기변형 특성에 관한 실험적 연구)

  • Yoon, Eui-Sik;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.401-409
    • /
    • 2006
  • This study presents basic information on the mechanical properties and long-term deformations of high-strength steel fiber reinforced concrete(HSFRC). The Influence of steel fiber on modulus of elasticity, compressive, splitting tensile and flexural strength, and drying shrinkage and creep of HSFRC are investigated, and flexural fracture toughness is evaluated. Test results show that Test results show that the effect of steel fibers on the compressive strength is negligible, and the modulus of elasticity of HSFRC increased with the increase of fiber volume fraction. And the effect of fiber volume fraction($V_f$) and aspect ratio($l_f/d_f$) on tensile strength, flexural strength and toughness is extremely prominent. It is observed that the flexural deflection corresponded to ultimate load increased with the increase of $V_f$ and $l_f/d_f$, and due to fiber arresting cracking, the shape of the descending branch of load-deflection tends towards gently. Also, the effect of addition of various amounts of fiber on the creep and shrinkage is obvious. Especially, the effect of adding fibers to high-strength concrete is more pronounced in reducing the drying shrinkage than the creep.

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.

Preventive Measures on Alkali-Silica Reaction of Crushed Stones (쇄석 골재의 알칼리-실리카 반응 방지 대책)

  • Jun Ssang-Sun;Lee Hyo-Min;Seo Ki-Young;Hwang Jin-Yeon;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.129-137
    • /
    • 2005
  • In Korea, due to the insufficiency of natural aggregates and increasing needs of crushed stones, it is necessary to examine the alkali-silica reaction of the crushed stones. The reaction produces an alkali-silica reaction gel which can imbibe pore solution and swell to generate cracks that are visible In affected concrete. In general, crushed stones are tested by petrograptuc examination, chemical method and mortar-bar method, but the most reliable method Is mortar-bar test. This study tested alkali-silica reactivity of crushed stones of various rock types using ASTM C 227 and C 1260, and compared the results of two test methods. This study also analyzed effects of particle size and grading of reactive aggregate on alkali-silica reaction expansion of mortar-bar. The effectiveness of mineral admixtures to reduce detrimental expansion caused by alkali-silica reaction was investigated through the ASTM C 1260 method. The mineral admixtures used were nv ash, silica fume, metakaolin and ground granulated blast furnace slag. The replacement ratios of 0, 5, 10, 15, 25 and $35\%$ were commonly applied for all the mineral admixtures and the replacement ratios of 45 and $55\%$ were additional applied for the admixtures that could maintain workability. The results indicate that replacement ratios of $25\%$ for ay ash, $10\%$ for silica fume, $25\%$ for metakaolin or $35\%$ for ground granulated blast furnace slag were most effective to reduce alkali-silica reaction expansion under the experimental conditions.

Radon concentration measurement at general house in Pusan area (부산지역 일반주택에서의 라돈농도측정)

  • Im, In-Cheol
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.29-33
    • /
    • 2004
  • Until early 1980s we have lived without thinking that radon ruins our health. But, scientists knew truth that radon radioactive danger is bedeviling on indoor that we live for a long time. Specially, interest about effect that get in danger and injury for Radon and human body is inactive in our country. Recently, with awareness for Radon contamination, We inform about importance and danger of Radon in some station of the Seoul subway, indoor air of school facilities and We had interest with measure and manages. Usually, Radon gas emitted in base of building enters into indoor through building floor split windage back among radon or indoor air of radon daughter nucleus contamination is increased. Therefore, indoor radon concentration rises as there are a lot of windages between number pipe of top and bottom and base that enter crack from estrangement of the done building floor, underground to indoor. Thus, Radon enters into indoor through architecture resources water as well as, kitchen natural gas for choice etc., but more than about 85% from earth's crust emit. Danger and injury of health by Radon and Radon daughter nucleus that is indicated for cause of lung cancer incerases content of uranium of soil rises specially from inside pit of High area and a mine, cave, hermetical space with house. Safe sub-officer of radon concentration can not know and danger always exists large or small during. So, Important thing reduces danger of lung cancer by lowering concentration of Radon within house and building. Therefore, is thought that need general house Radon concentration measurement, measured Radon concentration monthly using Sintillator radon monitor. Study finding appeared high all underground market 1 year than the ground, and the winter appeared high than the summer. Specially, month that pass over 4pCi in house that United States Environmental Protection Agency advises appeared in underground, and appeared and know Radon exposure gravity by 4 months during 12 months. Therefore, Thinking that establishment and regulation of norm and preparation of reduction countermeasure about Radon are pressing feels, and inform result that measure Radon concentration.

  • PDF

Study on Material Characteristics and Conservation Methods for Tracksite of Cretaceous Dinosaurs and Pterosaurs of Jeongchon area in Jinju, Korea (진주 정촌면 백악기 공룡·익룡발자국 화석산지의 재질특성 및 보존 방안 연구)

  • Ji Hyun Yoo;Yu Bin Ahn;Myoung Nam Kim;Myeong Seong Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.697-714
    • /
    • 2023
  • The Tracksite of Cretaceous Dinosaurs and Pterosaurs in Jeongchon, Jinju was discovered in late 2017 during the construction of the Ppuri industry complex. This site is a natural heritage site with a high paleontological value, as it preserves fossils of various types of dinosaurs, pterosaurs, and animal traces at a dense concentration. In this study, we surveyed that physical weathering such as joint, crack, scaling, exfoliation, and fragmentation occurred through field research in the fossil site, and conducted basic research on conservation science to reduce the damage. To this end, among the eight levels identified after excavation, the rocks of Level 3, which yielded a large number of theropod footprint fossils, and Level 4, which yielded pterosaur footprint fossils, were analyzed for material characteristics and evaluation of the effectiveness of consolidation and adhesion. This results showed that the rocks in the Level 3 stratum were dark gray siltstone and the rocks in the Level 4 stratum were dark gray shale, which contained a large amount of calcite and were composed of quartz, plagioclase, mica, alkali feldspar, and other clay minerals, which are likely to be damaged by rainfall under external conditions. As a result of conducting an artificial weathering experiment by dividing the probationary sample into four groups: untreated, consolidation treatment, anti-swelling treatment, and adhesive treatment, the consolidation and the swelling inhibitor showed an effect immediately after treatment, but did not show a blocking effect under a freezing-thawing environment. The adhesive showed that the adhesive effect was maintained even under freezing-thawing conditions. In order to preserve the fossil sites at Jeongchon in the future, in addition to temporary measures to block the inflow of moisture, practical measures such as the construction of protective facilities should be prepared.