• Title/Summary/Keyword: 균열 깊이

Search Result 247, Processing Time 0.024 seconds

Characteristics of the 80MPa High Strength Concrete according to the Hot Weather Outside Temperature conditions (서중 외기온도 조건에 따른 80 MPa 고강도콘크리트의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.688-696
    • /
    • 2016
  • This paper evaluates the effect of hot weather conditions on the fresh concrete characteristics of 80-MPa high-strength concrete. The slump flow, packing ability, setting time, hydration heat, and compressive strength were evaluated under exterior temperatures of $20^{\circ}C$, $30^{\circ}C$, and $40^{\circ}C$. The slump flow, arrival speed of 500 mm, and their changes with the elapsed time were found to bring the occurrence of rapid slump loss forward by about 30 minutes when increasing the temperature by $10^{\circ}C$ from $20^{\circ}C$. The initial and final setting times of the concrete at $20^{\circ}C$ were 7 hours and 12 hours, which were reduced by 1 hour and 3 hours at $30^{\circ}C$ and by 2 hours and 5 hours at $40^{\circ}C$, respectively. The hydration heat characteristics at $20^{\circ}C$ and $30^{\circ}C$ were similar in terms of the highest temperature of the concrete casting depth and the time when the maximum temperature occurred. However, at $40^{\circ}C$, the maximum temperature occurred about 4 hours earlier, and the highest temperature per the concrete casting depth increased by about $12^{\circ}C$. Therefore, it is concluded that the characteristics can vary according to the exterior temperature. Thus, quality assurance should consider workability, temperature cracks due to hydration heat, the properties of strength development, and other characteristics.

Safety Factor of Rigid Sewer Pipe by Different Types of Foundation and Backfill (기초형식 및 뒤채움재 종류별 강성관용 하수관거의 안전율)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.606-612
    • /
    • 2019
  • The main causes of subsidence and sinkholes in the lower part of urban roads are sewage line foundation and inadequate compaction of backfill material. This leads to many problems, such as the breakage of joints in sewer pipes, poor connection, pipe breakage, and cracks. To solve this problem, the support factor related to the sewer foundation and the safety factor according to the excavation depth were evaluated. For the foundation of rigidity tolerance, crushed stone foundation, and abandoned concrete foundation, a recently newly developed site assembly-type lightweight plastic foundation were used. Backfill materials were applied on site (sandy soil and clayey soil) and fluid backfill was recycled onsite. To evaluate the depth of excavation and the safety factor of each sewer pipe foundation, the design load considering the load factor and the support factor was evaluated. The support coefficients were 0.377 for a crushed stone foundation, 0.243 and 0.220 for an abandoned concrete foundation ($180^{\circ}$ and $120^{\circ}$), and 0.231 for a lightweight plastic foundation and fluid backfill. Overall, the safety factor was low when using the crushed stone foundation, and the safety rate was the highest when the foreclosed concrete foundation ($180^{\circ}$) was used. In addition, when the combination of lightweight plastic and fluid backfill materials was used, the safety factor was higher than that of abandoned concrete foundation ($120^{\circ}$), which means that the newly developed lightweight plastic foundation can be used as another alternative base of a steel pipe.

Evaluation on Shear Behaviors of the Dapped Ends of Domestic Composite Double Tee Slabs under the Short-Term Loading (단기하중하의 국내 합성 더블티 슬래브 댑단부 전단거동 평가)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.774-781
    • /
    • 2002
  • Shear behaviors of eight dapped ends of four full-scale domestic single-tee slabs were evaluated. The dapped ends with 10cm topping concrete were designed based on live load requirements for the domestic parking lot of m 500kgf/㎡ and for the large market of 1,200 kgf/㎡. All specimens were designed by the ACI 318-99 design. The variations of the experiment were the shape of hanger reinforcements as followings: 1) general PCI design method(currently used in domestic), 2) 90 degree bent-up, 3) 60 degree bent-up. All experiments were conducted with 1.2 m shear span. The results obtained in this study were 1) all specimens fully complied with the shear strength requirements as specified by ACI 318-99 except for one strand bond slip specimen, 2)a specimen with the 60 degree bent up hanger reinforcing detail showed the best shear behaviors under full service and ultimate load, and 3)a specimen with the 90 degree bent up hanger reinforcing detail resulted in the worst shear behaviors.

A Study on Estimation of Infinite Fatigue Life in Cruciform Fillet Welded Joint (십자형 필릿 용접부에서의 무한 피로수명 평가에 관한 연구)

  • Lee, Yong-Bok
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • The joining methods of steel structures of gas facilities, bridges, ships etc. by welding are composed mostly of T-type or cruciform fillet welding and full penetration or partial penetration according to the uses and the shape of the structures. In this study, it was examined the characteristics of fatigue crack according to penetration depth in relation to material thickness in the cruciform fillet welded joints. From the results, it was investigated the safe design stresses within the range of infinite life. When the LOP length is long the range of infinite life is small with root failure and when the LOP length is short the range of infinite life is large with teo failure. For the specimen of material thickness, 20mm welded by 3 pass compared with 10mm, 15mm welded by 2 pass, the fatigue strength and the range of infinite life was more improved by increasing of notch toughness from formation of micro-ferrite acicular structure.

Sensitivity Analyses of Finite Element Parameters of Laser Shock Peening for Improving Fatigue Life of Metalic components (금속 재료 피로수명 향상을 위한 LSP 유한요소 변수 민감도 해석)

  • Kim, Ju-Hee;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1821-1828
    • /
    • 2010
  • Laser shock peening(LSP) is an innovative surface treatment technique, and it has been successfully used to improve the fatigue performance of metallic components. It is widely known, that cracks caused by metal fatigue occur only at the location where the metal is subject to tension, and not at the location where the metal is subjected to compression. Therefore, LSP can be employed to improve fatigue life because it generates a high-magnitude compressive residual stress on the surface and interior of metallic components. In this study, we analyzed the applicability of the LSP method in improving fatigue performance and evaluated the various parameters that influence the compressive residual stress. Further, we analyzed the change in the mechanical properties such as surface dynamic stress and the compressive residual stress on the surface and interior of metallic components.

Enhancing the Performance of High-Strength Concrete Corbels Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.13-16
    • /
    • 2008
  • Corbels are short cantilevers that project from the faces of a column and are a type of stress disturbed member, resisting both the ultimate shear force applied to them by the beam, and the ultimate horizontal force caused by shrinkage, temperature changes, and creep of the supported elements. Recently, as there have been an increase in the use of high-strength concrete and the concern about corrosion problems, lots of researches about hybrid reinforcing technique, applying strategically high performance reinforcements to the concrete elements, are performed. In this study, fiber reinforced high strength concrete corbels were constructed and tested for applying hybrid reinforcing technique to the corbels using steel fibers and headed bars. The results showed that the performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the steel fibers were added and the percentage of steel fibers was increased. In addition, the corbel specimens used headed bars as main tension ties showed superior load carrying capacities, stiffness, and ductility to the corbel specimens anchored main tension ties by welding to the transverse bars.

  • PDF

Flexural Behaviors of High Performance Hollow Core Slabs with Upper Strands (상부강선을 갖는 고성능 중공슬래브의 휨거동)

  • 김인규;박현석;유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • Hollow core slabs generally have not been used for a bridge or a parking slab in Korea. In this study, high performance hollow core slabs, which have been the most thick one in domestic are re-designed and examined for practical use. Flexural tests were performed on four 315mm deep hollow core slabs to investigate adaptability for high vehicle live loadings and composite action with topping concrete. The precast slabs were pre-tensioned with ten strands of 1/2 inch diameter at the lower of slab and four strands of 1/2 inch diameter at the upper of slab, and cast with 80 mm deep topping concrete. Tested hollow core slabs showed ductile failure behaviors which were conformed to the current Ultimate Strength Design Method for a span of 10m up to the live load of 1,000 kgf/㎡. The rectangular md round shear cotters which were used for the composite action between precast and topping concrete, developed sufficient strengths because cracking, even micro had not been developed at the end of slabs up to the pure flexural tensile failure.

Investigation on the Effect of Laser Peening Variables on Welding Residual Stress Mitigation Using Dynamic Finite Element Analysis (동적 유한요소 해석을 통한 용접 잔류응력 이완에 미치는 레이저 피닝 변수의 영향 고찰)

  • Kim, Jong-Sung
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.84-92
    • /
    • 2010
  • 현재 가동 중인 몇몇 가압 경수로 원전 안전 1등급 설비의 이종금속 용접부는 일차수응력부식균열(PWSCC : Primary Stress Corrosion Cracking) 발생의 세가지 조건(민감 재질, 부식 환경, 인장응력)을 동시에 충족하고 있다. 즉, 이종금속 용접부는 PWSCC에 민감한 재질인 Alloy 600 계열 합금으로 제작 또는 용접되어 있으며 고온 수화학 부식 환경 하에 놓여있다. 아울러 오스테나이트 스테인리스 강의 예민화 예방을 위한 용접 후열처리 미실시로 높은 인장 용접 잔류응력이 작용하고 있다. 이러한 이종금속 용접부의 특성상 PWSCC가 발생할 잠재성이 있을 뿐만 아니라 국내외적으로 Alloy 600 계열 합금으로 제작 및 용접된 가압 경수로 원전 안전 1등급 설비의 이종금속 용접부에 실제 PWSCC가 발생된 사례들이 다수 보고되고 있다. 운전 환경 및 재질 변화 없이 PWSCC 발생을 예방하기 위해서는 인장 잔류응력을 이완시켜 낮은 인장 또는 압축 응력화하여야 한다. 이러한 인장 잔류응력 이완방법들로는 PWOL(Pre-emptive Weld Overlay), 레이저 피닝(Laser Peening), MSIP(Mechanical Stress Improvement Process), 워터 제트 피닝(Water Jet Peening), IHSI(Induction Heating Stress Improvement) 방법들이 있는데 공정 시간이 짧고 열 에너지 원이 필요 없으며 전체적인 소성 변형을 야기시키지 않는 레이저 피닝을 본 연구의 대상 방법으로 한다. 본 연구에서는 동적 유한요소 해석을 통해 용접 잔류응력을 이완시키는 레이저 피닝의 효과를 검증하고 용접 잔류응력에 미치는 레이저 피닝 변수의 영향을 고찰하고자 한다. 내부 보수용접이 수행된 경수로 원전 가압기 노즐 이종금속 용접부에 레이저 피닝을 적용한 경우에 대해 상용 유한요소 해석 프로그램인 ABAQUS를 이용하여 동적 유한요소해석을 수행한 결과, 고온 수화학 일차수와 접하는 Alloy 600 계열 합금 내면에서의 인장 잔류응력이 상당히 이완됨을 확인하였다. 또한, 최대충격 압력이 증가할수록, 충격압력 지속시간이 증가할수록, 레이저 스팟 직경이 증가할수록 내표면 인장 잔류응력 이완 정도는 감소하나 이완되는 영역의 깊이는 증가함을 알 수 있다. 또한, 레이저 피닝 방향이 잔류응력 이완에 미치는 영향은 미미함을 알 수 있다.

  • PDF

Analysis for Chloride Penetration in Concrete under Deicing Agent using Multi Layer Diffusion (다층구조확산을 고려한 제설제에 노출된 콘크리트의 염화물 해석)

  • Seo, Ji-Seok;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.114-122
    • /
    • 2016
  • Concrete is cost-benefit and high-durable construction material, however durability problem can be caused due to steel corrosion under chloride attack. Recently deicing salt has been widely spread in snowing season, which accelerates micro-cracks and scaling in surface concrete and the melted deicing salt causes corrosion in embedded steel. The previous governing equation of Fick's 2nd Law cannot evaluate the deteriorated surface concrete so that another technique is needed for the surface effect. This paper presents chloride penetration analysis technique for concrete subjected to deicing salt utilizing multi-layer diffusion model and time-dependent diffusion behavior. For the work, field investigation results of concrete pavement exposed deicing salt for 18 years are adopted. Through reverse analysis, deteriorated depth and increased diffusion coefficient in the depth are evaluated, which shows 12.5~15.0mm of deteriorated depth and increased diffusion coefficient by 2.0 times. The proposed technique can be effectively applied to concrete with two different diffusion coefficients considering enhanced or deteriorated surface conditions.

Pile-cap Connection Behavior Dependent on the Connecting Method between PHC pile and Footing (PHC말뚝과 확대기초 연결방법에 따른 접합부 거동)

  • Bang, Jin-Wook;Oh, Sang-Jin;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.25-32
    • /
    • 2016
  • The pile-cap connection part which transfers foundation loads through pile body is critical element regarding flexural and shear force because the change of area, stress, and stiffness occurs in the this region suddenly. The purpose of this study is to investigate the structural behavior of pile-cap connection dependent on fabrication methods using conventional PHC pile and composite PHC pile. A series of test under cyclic lateral load was performed and the connection behavior was discussed. From the test results, it was found that the initial rotational stiffness of pile-cap connection was affected by the length of pile-head inserted in footing and the location of longitudinal reinforcing bars. The types of pile and location of longitudinal reinforcing bars governed the behavior of pile-cap connection regarding load-carrying capacity, ductility, and energy dissipation.