• Title/Summary/Keyword: 균열 거동

Search Result 1,749, Processing Time 0.023 seconds

An Experimental Study on the Flexural Behavior of Slab Repaired and Reinforced with Strand and Polymer Mortar (강연선과 폴리머 모르타르에 의해 보수보강된 슬래브의 휨거동에 대한 실험적 고찰)

  • Yang Dong-Suk;Hwang Jeong-Ho;Park Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.171-177
    • /
    • 2005
  • Even though the cost associated with the repair and rehabilitation of existing structures are rapidly increasing, vast number of the repaired and rehabilitated structures do not function properly as expected during their remaining service lives. This paper focused on the flexural behavior of reinforced concrete slabs repaired and reinforced by PS strand and polymer mortar in the tension face. The slabs have the size of 700${\times}120{\times}$2200 m and 700${\times}120{\times}$1300 mm. Variables of experiment were space of strengthening, chipping, the number of strand, the kind of mortar in this experimental study. Attention is concentrated upon overall bending capacity, deflection, ductility and failure mode of repaired and reinforced slabs. Test results show that deflection of repaired and reinforced slabs reduced to approximately $40 \%$ comparison to standard slabs. Boundary cracking of chipping slab started ultimate load afterward. Concrete-mortar interface cracked 64.5 kN in repaired slab with AP mortar and 36.0 kN in repaired slab with general polymer mortar. Reinforcement effect increased with reducing space of strand. Also, Reinforcement effects are more by strand than by polymer mortar.

Direct Inelastic Strut-Tie Model Using Secant Stiffness (할선강성을 이용한 직접 비탄성 스트럿-타이 모델)

  • Park Hong-Gun;Kim Yun-Gon;Eom Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.201-212
    • /
    • 2005
  • A new strut-tie model using secant stiffness, Direct Inelastic Strut-Tie Model, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of struts and ties because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were highlighted by the comparison with the traditional strut-tie model. The Direct Inelastic Strut-Tie Model, as an integrated analysis/design method, can directly address the design strategy intended by the engineer to prevent development of macro-cracks and brittle failure of struts. Since the proposed model can analyze the inelastic deformation, indeterminate strut-tie model can be used. Also, since the proposed model controls the local deformations of struts and ties, it can be used as a performance-based design method for various design criteria.

Flexural Analysis of RC Beam Considering Autogenous Shrinkage Model (자기수축 모델을 고려한 철근콘크리트 보의 휨 거동 해석)

  • Yoo Sung-Won;Soh Yang-Sub;Cho Min-Jung;Koh Kyung-Taek;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.621-628
    • /
    • 2005
  • Recently, it is noticed that autogenous shrinkage of high-performance concrete causes early crack in high performance concrete structures. The purpose of the present study is to derive a realistic equation to estimate the autogenous shrinkage of high performance concrete and to apply to structural analysis. For this purpose, several series of concrete specimens have been tested. When water-binder ratio is fixed to $30\%$, major test variables were the type and contents of mineral admixture. The autogenous shrinkage of HPC with fly ash slightly decreased than that of OPC concrete, but the use of blast furnace slag increased with the autogenous shrinkage. A prediction equation to estimate the autogenous shrinkage of HPC with mineral admixture was derived and proposed in this study. The proposed equation show reasonably good correlation with test data on autogenous shrinkage of HPC with mineral admixture. The finite element program developed in this study provides the useful tool for the flexural analysis including the autogenous shrinkage model. By this program, we know that the tensile stress considering the autogenous shrinkage of reinforced concrete structures increase $20\~27\%$ than that not considering.

Evaluation on the Horizontal Shear Strength of Precast Concrete Slab with the Inverted-Rib-Plus (리브플러스 PC슬래브의 수평전단강도 평가)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Yun Cheul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.156-165
    • /
    • 2011
  • This study investigates the horizontal shear behavior of an interface between precast concrete (PC) and topping concrete(RC), and evaluates the horizontal based on the investigations by the experimental. Horizontal shear strength in connected surface is determined by the roughness an interface and the shear reinforcement or not. In this study, the main experimental parameters are the shear reinforcement types in the shape of loop-type and lattice-type, rebar spacing. A total of four specimens were shear strength tested and manufactured. As a result, the horizontal shear strength of reinforced connected surface was found to be controlled by deformation in vertical direction. Comparison of reinforcement shape, the mean initial crack load loop type specimens, the average maximum load and the junction of the average in terms of initial stiffness, respectively 33.7%, 45.9% and 55.2% were large enough. Evaluation results for shear strength equation of existing standard domestic, the loop-type reinforced 2.32 to 4.23 times, lattice-type reinforced 1.65 to 3.06 times appears to be higher. Behavior of interface or strength of structural design criteria was fairly safe side. It does not have any problems in the applied field is considered.

Behavior of RC Beam Strengthened with Advanced Lifting Hole Anchorage System (개선된 인양홀을 이용한 정착장치로 보강된 RC 보의 거동)

  • Oh, Min-Ho;Kim, Tae-Wan;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In order to strengthen RC structures, various strengthening methods have been used. Particularly, external tendon strengthening method is very popular method to strengthen damaged structures in terms of efficiency, ease, economics. In this study, improved anchorage elements using the lifting hole were proposed to strengthen PSC or RC girder without any damage. Two types of anchorage elements were proposed and these elements were applied on six RC beams. Also, three types of existing anchorage elements were applied on three RC beams. Otherwise, any anchorage element was not applied on one RC beam to used as a control beam. To analyse behavior of these elements, static load tests were carried out. Test variables were anchorage shapes, prestressing level on the steel bar and tendon profiles. Deflections, strains and modes of failure were recorded to examine the strengthening effects of the beams. Ductility index and tendon stress were analyzed by comparing cracking load, yielding load and ultimate load. As a result, proposed anchorage elements using lifting hole were superior to existing anchorage elements in terms of strengthening effect and furthermore, they showed ductile behavior based on energy method.

Applicability of Composite Polyurea Method Considering the Required Performance in Underground Parking Lot Upper Slab (공동주택 지하주차장 상부슬래브의 요구성능을 고려한 복합형 폴리우레아 공법의 적용성 검토)

  • Lee, Jung-Hun;Choi, Eun-Kyu;Song, Je-Young;Kim, Soo-Yeon;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.243-254
    • /
    • 2019
  • In this study, problems of the waterproofing methods in which water leakage occurs in the upper slab of the underground parking lot of apartment houses and the requirements considering the characteristics of the upper slab, and selected the appropriate performance(proposal) for the composite polyurea process are reviewed. As a result of the study, it is necessary to review performance such as responsiveness to upper slab of the multi-unit underground parking lot that is comprised of (1) crack and behavior responsiveness, (2) surface integrity, (3) vertical watertight stability, (4) pressure layer construction, (5) impact and pressure response and (6) vehicle moving load. As a result of evaluating 5 items corresponding to the requirements for the soft and hard complex polyurea, all of them were found to meet the conditions, and each materials were improved by compounding the materials that had problems when applying a single-ply method, thereby clarifying the advantages and disadvantages of the material property. However, in order to apply to the actual site, additional evaluation on site applicability such as mock-up evaluation should be conducted, and subsequent studies on the applicability of the market through review of economic feasibility and maintenance is required.

A Study on Behavior Characteristics of Reinforcement Zone of Block Type Mechanically Stabilized E arth Wall by Field Measurement in Curved Section (현장 계측을 통한 블록형 보강토옹벽 곡선부 보강 영역의 거동 특성 연구)

  • Lee, So-Yeon;Kim, Young-Je;Oh, Dong-Wook;Lee, Yong-Joo;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.23-36
    • /
    • 2019
  • In this paper, field measurement of the Block Type Mechanically Stabilized Earth (MSE) wall curved section was performed, and the reinforced area of the curved part is studied through the result. MSE method has been applied to various fields because of easy construction and excellent economic efficiency, so that it can be easily access in our life. However due to lack of compaction and stress concentration phenomenon, cracks and collapse occur in the curve of MSE wall, which is important for safety. The cause of collapse is lack of research on curved section, lack of design criteria, lack of construction due to economical efficiency and shortening of construction period, insufficient compaction space. In this study, therefore, it was examined the existing design and construction standards, analyzed the cause through accident examples of the curved section of the Block Type MSE wall. As a result, the horizontal displacement of the curved section was 90% higher than that of the straight section and 60% higher than that of the concave section. In the case of the convex section in the curved section reinforcement region, the maximum displacement is shown in the H/2 section in the horizontal direction from the center of the MSE wall, and the range of influence from H is shown. In the case of the concave section, the maximum displacement is shown in the center, The minimum displacement was confirmed in H/4 section in the horizontal direction from the center of the MSE wall. As a basic study on the reinforcement area rehabilitation through the actual construction of block type MSE wall, the behaviors of the straight part and the curved part were compared and analyzed. And analyzed the reinforced area in order to reduce the damage of the stress concentration phenomenon and secure the safety.

Carbonation Behavior Evaluation of OPC Concrete Considering Effect of Aging and Loading Conditions (재령 및 하중효과를 고려한 OPC 콘크리트의 탄산화 거동 평가)

  • Hwang, Sang-Hyeon;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.122-129
    • /
    • 2019
  • The movement of deterioration agents such as a chloride ion, etc. in concrete varies with loading conditions and micro-structure developed by age effect. In this paper, the carbonation behavior by accelerated carbonation test is evaluated considering curing periods(28 days, 91 days, and 365 days) and loading conditions. Carbonation velocity coefficients are obtained referred to KS F 2584. In the control case without loading condition, carbonation velocity coefficient of 91 days decreases to 50.0 % level and that of 365 days decreases to 44.8 % level than that of 28 days curing condition. In 28 curing days, carbonation velocity coefficients changed level of 103.9 ~ 108.8 % in tensile region and 91.9~104.6 % in compressive region by loading conditions. Carbonation velocity coefficients in the 30 % and 60 % tensile loading case at 28 days decreases to 47.3 % and 52.5 % level compared to control case after 1 year. Furthermore, 45.8 % and 44.9 % level of carbonation velocity coefficients are evaluated for 30 % and 60 % compressive loading conditions compared to control case after 1 year. Carbonation velocity coefficient decreases in the 30 % compressive loading level due to effective pore compaction and it increases afterwards due to micro-cracking. In the tensile loading condition, unlike the behavior of compressive region, it linearly increases with increasing loading level.

Flexural Performance of PHC Piles with Infilled concrete and Longitudinal Reinforcing Bars (속채움 콘크리트 및 길이방향 철근으로 보강된 PHC 파일의 휨성능)

  • Han, Sun-Jin;Lee, Jungmin;Kim, Min-Seok;Kim, Jae-Hyun;Kim, Kang Su;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.77-84
    • /
    • 2021
  • In this study, flexural tests of prestressed high strength spun concrete (PHC) piles reinforced with infilled concrete and longitudinal rebars were conducted, where the longitudinal rebar ratio and the presence of sludge formed on the inner surface of PHC pile were set as key test variables. A total of six PHC pile specimens were manufactured, and their flexural behaviors including failure mode, crack pattern, longitudinal strain distribution in a section and end slip between external PHC pile and infilled concrete were measured and discussed in detail. The test results revealed that the flexural stiffness and strength increased as the longitudinal rebar ratio became larger, and that the sludge formed on the inner surface of PHC pile did not show any detrimental effect on the flexural performance. In addition to the experimental approach, this study presents a nonlinear flexural analysis model considering compatibility conditions and strain and stress distributions of the PHC piles and infilled concrete. The rationality of the nonlinear flexural analysis model was verified by comparing it with test results, and it appeared that the proposed model well evaluated the flexural behavior of PHC piles reinforced with infilled concrete and longitudinal rebars with a good accuracy.

Seismic Performance Evaluation of Dam Structures and Penstock Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 댐 구조체와 수압철관의 내진성능평가)

  • Heo, So-Hyeon;Nam, Gwang-Sik;Jeong, Yeong-Seok;Kwon, Minho
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.141-150
    • /
    • 2022
  • Responding to the increasing demand for research on seismic resistance of structures triggered by a large-scale earthquake in Korea, the Ministry of the Interior and Safety revised the typical application of the existing seismic design standards with the national seismic performance target enhanced. Therefore, in this paper, the dam body of the aged Test-Bed and the penstock with fluid were modeled by the three-dimensional finite element method by introducing several variables. The current seismic design standard law confirmed the safety of the dam structure and penstock against seismic waves. As a result of the 3D finite element analysis, the stress change due to the water impact of the penstock was minimal, and it was confirmed that the effect of the hydraulic pressure was more significant than the water impact in the earthquake situation. When the hydrostatic pressure is in the form of SPH, it was analyzed that the motion of the fluid and the location of stress caused by the earthquake can be effectively represented, and it will be easier to analyze the weak part. As a result of the analysis, which considers penstock's corrosion, the degree of stress dispersion gets smaller because the penstock is embedded in the body. The stress result is minimal, less than 1% of the yield stress of the steel. In addition, although there is a possibility of micro-tensile cracks occurring in the inlet of the dam, it has not been shown to have a significant effect on the stress increa.