DOI QR코드

DOI QR Code

Seismic Performance Evaluation of Dam Structures and Penstock Considering Fluid-Structure Interaction

유체-구조물 상호작용을 고려한 댐 구조체와 수압철관의 내진성능평가

  • 허소현 (경상국립대학교 토목공학과) ;
  • 남광식 (경상국립대학교 토목공학과) ;
  • 정영석 (경상국립대학교 토목공학과) ;
  • 권민호 (경상국립대학교 토목공학과)
  • Received : 2021.10.08
  • Accepted : 2021.12.22
  • Published : 2022.04.30

Abstract

Responding to the increasing demand for research on seismic resistance of structures triggered by a large-scale earthquake in Korea, the Ministry of the Interior and Safety revised the typical application of the existing seismic design standards with the national seismic performance target enhanced. Therefore, in this paper, the dam body of the aged Test-Bed and the penstock with fluid were modeled by the three-dimensional finite element method by introducing several variables. The current seismic design standard law confirmed the safety of the dam structure and penstock against seismic waves. As a result of the 3D finite element analysis, the stress change due to the water impact of the penstock was minimal, and it was confirmed that the effect of the hydraulic pressure was more significant than the water impact in the earthquake situation. When the hydrostatic pressure is in the form of SPH, it was analyzed that the motion of the fluid and the location of stress caused by the earthquake can be effectively represented, and it will be easier to analyze the weak part. As a result of the analysis, which considers penstock's corrosion, the degree of stress dispersion gets smaller because the penstock is embedded in the body. The stress result is minimal, less than 1% of the yield stress of the steel. In addition, although there is a possibility of micro-tensile cracks occurring in the inlet of the dam, it has not been shown to have a significant effect on the stress increa.

국내 대규모 지진 이후 구조물의 내진에 대한 연구 필요성이 커짐에 따라 행정안전부에서는 기존의 내진설계기준 공통적용사항을 개정하여 국가내진성능 목표치를 상향하였으며 새로 개정된 내진설계기준의 성능목표치에 대한 연구가 필요하게 되었다. 이에 본 논문에서는 실제 노후화된 Test-Bed의 댐 제체와 내부에 매립되어 있는 수압철관과 유체를 여러 변수를 도입하여 3차원 유한요소법으로 모델링 하였으며 수압철관 내부 유체의 동수압으로 인한 거동을 분석하고 개정된 현행 내진설계 기준법에 부합하는 지진파에 대한 댐 제체와 수압철관의 안전성을 확인하였다. 3차원 유한요소해석결과 수압철관의 수충격에 의한 응력변화가 매우 작았으며 이를 통해 지진상황에서 수충격 보다 동수압의 영향이 더 큰 것을 확인할 수 있었다. 동수압이 SPH 형태인 경우 지진동으로 인한 유체의 거동과 응력 발생 위치를 유효하게 나타낼 수 있으며 취약부 분석에 더욱 용이할 것으로 분석되었다. 부식을 고려한 해석결과 수압철관이 제체의 매립되어 있기 때문에 응력 분산의 정도가 작아져 강재 항복응력의 1% 이하로 매우 작은 응력결과를 보였다. 또한 콘크리트 댐 제체의 상류 유입부의 미소 인장균열 발생 가능성이 있으나 수압철관의 응력증가에 큰 영향을 끼치지 않는 것으로 나타났으며 개정된 유효지반가속도의 지진상황에서 안전한 것으로 판단된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2019R1A2C1003007).

References

  1. ABAQUS, Dassault System Simulia Corp. (2018), "Abaqus Ex ample Problems Guide 2.3.2. Version 2018".
  2. KCSC (2018), "Concrete gravity dam, KDS 54 5000, 1~5".
  3. KCSC (2019), "Seismic design standards for dams, KDS 54 17 00, 3~5".
  4. Korea authority of land & Intrastructure Safety (KALIS) (2019), "2019 Revision of Seismic Performance Evaluation Guidelines for Existing Facilities (Buildings), 1~23".
  5. Ministry of Construction, Industrial Base Development Corporation (K-water) (1981), "Daecheong Multipurpose Dam Construction".
  6. Ministry of the Interior and Safety (MOIS) (2017), "Common applications of seismic design standards".
  7. Wieland, M. (2013), "Seismic Design of Major Components", International Water Power & Dam Construction, 16~19.
  8. American Galvanizer Association (AGA) (2010), "Time to First Maintenance Chart for Hot-Dip Galvanized Coatings", Avaliable at: https://galvanizeit.org/hot-dip-galvanizing/how-long-does-hdg-last/in-the-atmosphere/time-to-first-maintenance
  9. JIS (2014), Steel standard, "About SM400B", 1-2. Avaliable at: http://www.ishiharashouji.jp/QA.html
  10. JIS (2014), Steel standard, "About SM490B", 1-2. Avaliable at: http://www.ishiharashouji.jp/QA.html
  11. Jo, Y. H., J. H. Han and S. P. Jang (2014), "The Direction of Dam Management in Korea from the Perspective of Dam Management in Foreign Countries (Focusing on the management of aging dams)", Journal of Water for future, Korea Water Resources Association, 47(1): 48~55. Avaliable at: https://www.koreascience.or.kr/article/JAKO201418958179009.page
  12. Nam, M. J., J. Y. Lee and W. Y. Jung (2020), "Development of Water Hammer Simulation Model for Safety Assessment of Hydroelectric Power Plant", Korea Academy Industrial Cooperation Society, 21(1): 760~767. DOI: https://doi.org/10.5762/KAIS.2020.21.1.760
  13. Nam, M. J., J. Y. Lee and W. Y. Jung (2021), "Scenario-based Vulnerability Assessment of Hydroelectric Power Plant", Journal of Korean Society of Disaster and Security, 14(1): 9~21. DOI: https://doi.org/10.21729/ksds.2021.14.1.9
  14. Rezaiee-Pajand, M., M. S. Kazemiyan and A. Aftabi Sani (2021), "A Literature Review on Dynamic Analysis of Concrete Gravity and Arch Dams", Archives of Computational Methods in Engineering, 28: 4357~4372. DOI: https://doi.org/10.1007/s11831-021-09564-z
  15. Seismosoft (2020), Earthquake Software for Artificial Accelerograms Generation, Avaliable at: https://seismosoft.com/products/seismoartif/
  16. Woo, J. H., W. B. Na and J. S. Yu (2014), "Anchor Collision Simulation of Rock-berm using SPH Technique", Journal of Korean Society of Coastal and Ocean Engineers, 26(1): 9~15. DOI: http://dx.doi.org/10.9765/KSCOE.2014.26.1.9
  17. Yoo, K. P. (2013), "Development of Three Dimension Smoothed Particle Hydrodynamic Code for Flow Simulation of Fluid", Department of Mechanical Engineering Graduate School, University of Incheon, Master's thesis. 22~26.