• Title/Summary/Keyword: 균열해석기법

Search Result 262, Processing Time 0.029 seconds

Interpretation of Making Techniques and Nondestructive Diagnosis for the Clay Statues in Donggwanwangmyo Shrine, Seoul (서울 동관왕묘 소조상의 비파괴진단 및 제작기법 해석)

  • Yi, Jeong Eun;Han, Na Ra;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.29 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • The Clay Statues of Donggwanwangmyo Shrine (Treasure No. 142) are highly damaged physical weathering which are crack, exfoliation. Pigment of surface are discolored by chemical weathering like dust. The result of ultrasonic velocity measurement, low velocity zone was measured the lowest part of Woojanggun Statue. Deficiency condition of pigment layer was evaluated quantitatively through infrared Thermography. As a result, exfoliation part was detected at high temperature. Making techniques of the Clay statues were identified by gamma rays, infrared TV, SEM. All Clay Statues were founded on wood base and joints of wood were fixed using thin iron wires. After wood base was twisted a straw rope, it was made by clay. Clay was blended with rice straw to prevention of crack and exfoliation. The upper side of clay layer was coated with Hanji(Korean handmade paper) and cotton in order to isolate the pigment layer.

The Shock and Fracture Analysis of Ship Structure Subject to Underwater Shock Loading (수중충격하중을 받는 선체구조의 충격 및 파손 해석)

  • Kie-Tae Chung;Kyung-Su Kim;Young-Bok Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.118-131
    • /
    • 1995
  • The shock fracture analysis for the structures of navy vessels subject to underwater explosions or of high speed vessels frequently subject to impact loads has been carried out in two steps such as the global or macro analysis and the fine or micro analysis. In the macro analysis, Doubly Asymptotic Approximation(DAA) has been applied. The three main failure modes of structure members subject to strong shock loading are late time fracture mode such as plastic large deformation mainly due to dynamic plastic buckling, and the early time fracture mode such as tensile tearing failure or transverse shear failure. In this paper, the tensile tearing failure mode is numerically analyzed for the micro analysis by calculating the dynamic stress intensity factor $K_I(t)$, which shows the relation between stress wave and crack propagation on the longitudinal stiffener of the model. Especially, in calculating this factor, the numerical caustic method developed from shadow optical method of caustic well known as experimental method is used. The fully submerged vessel is adopted for the macro analysis at first, of which the longitudinal stiffener, subject to early shock pressure time history calculated in macro analysis, is adopted for the micro analysis.

  • PDF

Analytical Study on the Inelastic Behavior of Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.29-40
    • /
    • 2005
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

A Study on the Vibration Characteristics of Thin Plate with Crack under Tension using ESPI (ESPI기법에 의한 하중을 받는 균열 박판의 진동 특성에 관한 연구)

  • Kim, Koung-Suk;Kang, Ki-Soo;Choi, Ji-Eun;Park, Chan-Ju;Hong, Jin-Who
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.182-188
    • /
    • 2001
  • This paper presents the vibration characteristics of a rectangular plate with $45^{\circ}$ oblique crack subjected to a uniaxial tension. The experiment is adopted by the time-average Electronic Speckle Pattern Interferometry(ESPI) method. The natural frequency and mode shape are considered accurately according to the increase of tensile load. When tensile load is zero, the vibration modes we agreed with the smooth and the $45^{\circ}$ obliquely cracked plate. But according to the increasement of load it is shown that vibration modes are extremely varied. The effects of the crack under the vibration are discussed in detail. It is indicated that the increase of load makes the variation of the frequencies and modes complicate in the range of even a small load. The results are agreed with the FEM analysis within 5%.

  • PDF

A Numerical Study on the Rock Fragmentation by TBM Cutter Penetration (TBM 커터 관입에 의한 암석 파쇄의 수치해석적 연구)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.444-454
    • /
    • 2003
  • Rock fragmentation technique by cutter penetration has widely been used in the mechanical tunnel excavation. Microcracks propagate and interact because of locally concentrated high stress induced by cutter penetration. which is caused by heterogeneity of rocks. In this study Weibull distribution function and degradation index are used to consider the strength heterogeneity of a rock and the degradation of rock properties after failure. Through the numerical analyses, it is shown that the lateral pressure has an important influence on the rock fragmentation. In the single cutter penetration, large chips are formed as lateral pressure increase. The cutter spacing is also an important factor that affects the rock fragmentation in the double cutter penetration. The fragmentation efficiency of the double cutter penetration is better when cutter spacing is 70 mm than 40 mm and 100 mm. From the results, it is expected that this study can be applied to a TBM tunnel design by understanding of chipping process and mechanism of rock due to cutter penetration.

Extended MLS Difference Method for Potential Problem with Weak and Strong Discontinuities (복합 불연속면을 갖는 포텐셜 문제 해석을 위한 확장된 MLS 차분법)

  • Yoon, Young-Cheol;Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.577-588
    • /
    • 2011
  • This paper provides a novel extended Moving Least Squares(MLS) difference method for the potential problem with weak and strong discontinuities. The conventional MLS difference method is enhanced with jump functions such as step function, wedge function and scissors function to model discontinuities in the solution and the derivative fields. When discretizing the governing equations, additional unknowns are not yielded because the jump functions are decided from the known interface condition. The Poisson type PDE's are discretized by the difference equations constructed on nodes. The system of equations built up by assembling the difference equations are directly solved, which is very efficient. Numerical examples show the excellence of the proposed numerical method. The method is expected to be applied to various discontinuity related problems such as crack problem, moving boundary problem and interaction problems.

Residual Stress Measurement of Flat Welded Specimen by Electronic Speckle Pattern Interferometry (전자처리스페클패턴 간섭법을 이용한 평판 용접시험편의 잔류응력 측정)

  • Chang, Ho-Seob;Kim, Dong-Soo;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • The size and distribution of welding residual stress and welding deformation in welding structures have an effect on various sorts of damage like brittle failure, fatigue failure and stress corrosion cracking. So, research for this problem is necessary continuously. In this study, non-destructive technique using laser electronic speckle pattern interferometry, plate of welding specimen according to the external load on the entire behavior of residual stress are presented measurement techniques. Once, welding specimen force tensile loading, using electronic speckle pattern interferometry is measured. welding specimen of base metal and weld zone measure strain from measured result, this using measure elastic modulus. In this study, electronic speckle pattern interferometry use weld zone and base metal parts of the strain differences using were presented in residual stress calculated value, This residual stress value were calculated by numerical calculation. Consequently, weld zone of modulus high approximately 3.7 fold beside base metal and this measured approximately 8.46 MPa.

An Alternative One-Step Computation Approach for Computing Thermal Stress of Asphalt Mixture: the Laplace Transformation (새로운 아스팔트 혼합물의 저온응력 계산 기법에 대한 고찰: 라플라스 변환)

  • Moon, Ki Hoon;Kwon, Oh Sun;Cho, Mun Jin;Cannone, Falchetto Augusto
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.219-225
    • /
    • 2019
  • Computing low temperature performance of asphalt mixture is one of the important tasks especially for cold regions. It is well known that experimental creep testing work is needed for computation of thermal stress and critical cracking temperature of given asphalt mixture. Thermal stress is conventionally computed through two steps of computation. First, the relaxation modulus is generated thorough the inter-conversion of the experimental creep stiffness data through the application of Hopkins and Hamming's algorithm. Secondly, thermal stress is numerically estimated solving the convolution integral. In this paper, one-step thermal stress computation methodology based on the Laplace transformation is introduced. After the extensive experimental works and comparisons of two different computation approaches, it is found that Laplace transformation application provides reliable computation results compared to the conventional approach: using two step computation with Hopkins and Hamming's algorithm.

Reliability Prediction of Failure Modes due to Pressure in Solid Rocket Case (고체로켓 케이스 내압파열 고장모드의 신뢰도예측)

  • Kim, Dong-Seong;Yoo, Min-Young;Kim, Hee-Seong;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.635-642
    • /
    • 2014
  • In this paper, an efficient technique is developed to predict failure probability of three failure modes(case rupture, fracture and bolt breakage) related to solid rocket motor case due to the inner pressure during the mission flight. The overall procedure consists of the steps: 1) design parameters affecting the case failure are identified and their uncertainties are modelled by probability distribution, 2) combustion analysis in the interior of the case is carried out to obtain maximum expected operating pressure(MEOP), 3) stress and other structural performances are evaluated by finite element analysis(FEA), and 4) failure probabilities are calculated for the above mentioned failure modes. Axi-symmetric assumption for FEA is employed for simplification while contact between bolted joint is accounted for. Efficient procedure is developed to evaluate failure probability which consists of finding first an Most Probable Failure Point(MPP) using First-Order Reliability Method(FORM), next making a response surface model around the MPP using Latin Hypercube Sampling(LHS), and finally calculating failure probability by employing Importance Sampling.

Technical Consideration for Production Data Analysis with Transient Flow Data on Shale Gas Well (셰일가스정 천이유동 생산자료분석의 기술적 고려사항)

  • Han, Dong-kwon;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • This paper presents development of an appropriate procedure and flow chart to analyze shale gas production data obtained from a multi-fractured horizontal well according to flow characteristics in order to calculate an estimated ultimate recovery. Also, the technical considerations were proposed when a rate transient analysis was performed with field production data occurred to only $1^{st}$ transient flow. If production data show the $1^{st}$ transient flow from log-log and square root time plot analysis, production forecasting must be performed by applying different method as before and after of the end of $1^{st}$ linear flow. It is estimated by an area of stimulated reservoir volume which can be calculated from analysis results of micro-seismic data. If there are no bottomhole pressure data or micro-seismic data, an empirical decline curve method can be used to forecast production performance. If production period is relatively short, an accuracy of production data analysis could be improved by analyzing except the early production data, if it is necessary, after evaluating appropriation with near well data. Also, because over- or under-estimation for stimulated reservoir volume could take place according to analysis method or analyzer's own mind, it is necessary to recalculate it with fracture modeling, reservoir simulation and rate transient analysis, if it is necessary, after adequacy evaluation for fracture stage, injection volume of fracture fluid and productivity of producers.