• Title/Summary/Keyword: 균열특성

Search Result 2,071, Processing Time 0.026 seconds

Mo 첨가 및 TT 열처리에 따른 합금 690의 부식 특성

  • 전유택;박용수;김영식
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.790-795
    • /
    • 1995
  • 합금 600의 대체 재료인 합금 690의 부식 저항성 향상을 위해 스테인리스강 등에서 내식성을 현저히 개선시켜 주는 합금 원소로 알려져 있는 Mo을 첨가하여 TT 열처리를 한 후 부식 특성과 TEM관찰을 행하여 미세 조직의 영향에 대하여 고찰하고자 하였다. TT 처리 시간이 길어짐에 따라 보다 많은 석출물들이 입계에 생성되었으며, Mo을 첨가함에 따라 입계에 탄화물 석출이 지연되었다. 양극 분극 시험, 침지시험, EPR 시험, Huey 시험 결과 소둔재에 비해 TT 처리재의 경우 내식성의 저하는 업었으며 오히려 개선되는 특성을 보였다. 또한 Mo의 함량이 증가함에 따라 탄화물 석출에 걸리는 시간이 길어져 3%의 Mo이 첨가된 합금 690 M2의 경우 예민화 현상은 15시간 TT 처리에서 관찰되었다. 응력 부식 균열 시험 결과 소둔재에 비해 TT 처리재의 응력 부식 균열 저항성이 증가하였으며 Mo의 함량이 증가함에 따라 대체적으로 응력 부식 균열 저항성도 개선되었다.

  • PDF

Study on Fatigue Property of Material for Oil Hydraulic Piston Pump (유압 피스톤 펌프 소재의 피로특성 연구)

  • Kim, Nam-Seok;Nam, Ki-Woo;Kim, Hyun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.555-559
    • /
    • 2011
  • Oil hydraulic piston pumps are extensively used worldwide because of their simple design, light weight, and cost effectiveness. However, an oil hydraulic pump is likely to have high leakage, friction, and low energy efficiency after long-term use. In oil hydraulic piston pumps the clearance between the valve block and the piston plays an important role in the volumetric and overall efficiency. We studied the wear property of the SACM645 material used in hydraulic piston pumps via experiments with different heat treatments. We prepared three different specimens. The maximum tensile strengths of the QT and QT-nitration specimens are similar (about 820 MPa), but the strains are significantly different. However, the fatigue characteristic depended on the heat treatment.

Experimental Study on Tension-Hardening and Softening Characteristics in Reinforced Mortar with CSA Expansion Agent (CSA 팽창재를 혼입한 철근보강 모르타르의 인장 경화-연화 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • Expansion agent is a very effective admixture for prevention of cracking due to autogenous/drying shrinkage and this can induce internal chemical prestress to embedded reinforcement. In this paper, tension-softening and hardening in cement mortar with steel and CSA expansion agent are experimentally evaluated. Cement mortar with steel reinforcement is prepared and tensile strength test is performed for evaluation of cracking and tensile behavior. In spite of slightly reduced strength and elasticity in CSA mortar, significantly increased tension-hardening behavior is evaluated in CSA mortar with induced chemical prestress. Furthermore previous tension softening models are compared with the test results and improvement are proposed.

A Study on the Strength and Drying Shrinkage Crack Control Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 섬유보강 콘크리트의 강도 및 건조수축균열 제어특성 연구)

  • 오병환;이명규;유성원;백상현
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.151-161
    • /
    • 1996
  • Recently, polypropylene fiber reinforced mortar and concrete as civil and architectural materials have been used in major countries in the world. Polypropylene fiber reinforced concrete has many advantages in terms of economical aspect, chemical stability and durability. It has been reported that polypropylene fiber can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. The purpose of the present study is, therefore, to investigate the strength as well as many mechanical characteristics including toughness and shrinkage control properties. A specially devjsed shrinkage test has been applied to measure the crack control characteristics of polypropylene fiber reinforced concrete. The present study indicates that the polypropylene fiber reinforced concrete curbs greatly the crack occurrence due to shrinkage and enhances toughness resistance. The present study provides a firm base for the efficient use of polypropylene fiber reinforced concrete in actual construction such as pavements and slab structures.

Characteristic and Analysis of Fatigue Crack for Curved Girder Bridge based on the Stress Range Histerisis (실동이력에 기초한 곡선거더교의 피로균열 특성 및 분석)

  • Kwon, Soon Cheol;Kyung, Kab Soo;Kim, Da Young;Lee, Ha Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.1-13
    • /
    • 2008
  • The web of a horizontally curved plate girder bridge is, in general, subject to not only longitudinal flexural in-plane stress but also out-of-plane bending stress. Therefore, the induced stresses in the fillet welded joints at the intersection of the web and flange plates in the curved plate girder bridge can be considerably high, and the welded joints of gusset plates connecting the main girder to the floor beams or sway bracings can be subject to much more severe situation than those in the ordinary straight plate girder bridge. In order to investigate the cause of fatigue crack occurred in a curved girder bridge that has been served in about 23 years, in this study, field load tests have been performed to obtain the stress characteristics at the welded joint under the real traffic flow. Using the test results, we have investigated the causes of the occurrence of various fatigue cracks and have estimated the fatigue lives for the cracks. In addition, the characteristics of structural behavior at welded joint of the curved girder bridge have been examined by comparing the FE analysis and the field test result.

Characteristics of Microcrack Orientations in Mesozoic Granites and Granitic Dyke Rocks from Seokmo-do, Ganghwa-gun (강화군 석모도 일대의 중생대 화강암류 및 화강암질 암맥류에서 발달하는 미세균열의 분포특성)

  • Park, Deok-Won;Lee, Chang-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.129-143
    • /
    • 2007
  • We have studied orientational characteristics of microcracks in Mesozoic granites and granitic dyke rocks from Seokmo-do, Ganghwa-gun. Microcracks on horizontal surfaces of rock samples from 14 sites were investigated by image processing. Orientations of these microcracks compared with those of 18 sets of joints in Mesozoic granites from Seokmo-do. From the related chart, microcrack sets show strong preferred orientations which obviously are coincident with the direction of vertical common joints. It follows that the formation of macroscopic joints may be the results of further growth and step-wise jointing of pre-existing microcracks. Orientations of microcracks from this result also compared with those of vertical rift and grain planes for Jurassic and Cretaceous granite quarries in Korea. As shown in the distribution chart, the congruence of distribution pattern among microcracks and rift and grain planes suggests that similar microcrack systems probably occur regionally in Jurassic and Cretaceous granites from Korea. In particular, whole domain of the distribution chart was divided into 16 groups in terms of the phases of distribution of microcracks and planes. These microcrack sets in each domains construct complex composite microcrack systems which have formed progressively by different geologic processes and under varying conditions.

Characteristics of the Rock Cleavage in Jurassic Granite, Geochang (거창지역의 쥬라기 화강암에 발달된 결의 특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.153-164
    • /
    • 2015
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. we have mainly discussed the structual anisotropy formed by microcracks. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. The planes of principal set of microcracks are parallel to the rift plane and those of secondary set are parallel to the grain plane. These rift and grain microcracks are mutually near-perpendicular on the hardway planes. From the directional angle(${\theta}$) - total length($L_t$), number(N) and density(${\rho}$) chart, the curve patterns of the above microcrack parameters reflect the phases of distribution of microcracks. Microcrack parameters such as number, length and density show an order of rift > grain > hardway. These results indicate a relative magnitude of the rock cleavage. Meanwhile, brazilian tensile strengths were measured with respect to the six directions. The results revealed a strong correlation between mechanical property with the above microcrack parameters. These general results correspond to those of the previous study for Jurassic granites from Pocheon and Hapcheon. Image processing technique for the enlarged photomicrograph of the thin section was carried out. The grain 1(G1) microcrack arrays developed in quartz and feldspar grains show excellent distribution on the photomicrograph. In particular, the directional angle of each microcrack set can be ascertained easily by brief image processing for the above photomicrograph.

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

A Study on the Cracking Control Effects of Shrinkage Reduction Concrete (수축보상형 콘크리트의 균열억제 효과에 관한 연구)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.569-577
    • /
    • 2015
  • The aim of this study is to qualitatively evaluate the cracking control effects of expansive concrete used in reinforced concrete building. The result of experiments in laboratory shows that autogenous shrinkage and drying shrinkage are suppressed by using expansive additive. The tensile stress-strength ratio is lower in expansive concrete than normal concrete under fully restrained condition. Compression stress could be effectively generated in early age in the walls in buildings by the use of expansive additive, and tensile stress due to drying shrinkage at later age eventually decreased. Additionally, visual observation at long-term ages shows that the cracking area of expansive concrete was approximately 35% of normal concrete, which confirms that the use of expansive additive reduces concrete cracking in reinforced concrete buildings.

Bond Characteristics of High-Strength Concrete (고장도 콘크리트의 부착특성에 관한 연구)

  • Lee, Joon-Gu;Mun, In;Yum, Hwan-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.499-506
    • /
    • 2001
  • Eight direct tension tests were conducted to study the bond characteristics and crack behavior in high-strength concrete axial members. The main variable was the concrete strength up to 61-63 MPa. The specimens consisted of two different types of the short specimens modeled the part between transverse cracks and the long specimens having numerous transverse cracks. The results obtained show that the bond strength increases in proportion to compressive strength. Thereby, in high-strength concrete the length of stress-disturbed region is shortened and the space of adjacent transverse cracks become smaller. Although the concrete strength varies from 25 MPa to 61 MPa, the split cracking loads remain constant, while transverse cracking loads vary as variation of concrete tensile strength. Accordingly, the current code provisions for development length may need reconsideration in high-strength concrete members, and it is recommended that either thicker cover or transverse reinforcement should be additionally provided for high-strength concrete members.