DOI QR코드

DOI QR Code

A Study on the Cracking Control Effects of Shrinkage Reduction Concrete

수축보상형 콘크리트의 균열억제 효과에 관한 연구

  • Choi, Hyeong-Gil (Graduate School of Engineering, Muroran Institute of Technology) ;
  • Kim, Gyu-Yong (Department of Architectural Engineering, Chungnam National University) ;
  • Noguchi, Takafumi (Department of Architecture, The University of Tokyo)
  • Received : 2015.05.18
  • Accepted : 2015.06.23
  • Published : 2015.10.30

Abstract

The aim of this study is to qualitatively evaluate the cracking control effects of expansive concrete used in reinforced concrete building. The result of experiments in laboratory shows that autogenous shrinkage and drying shrinkage are suppressed by using expansive additive. The tensile stress-strength ratio is lower in expansive concrete than normal concrete under fully restrained condition. Compression stress could be effectively generated in early age in the walls in buildings by the use of expansive additive, and tensile stress due to drying shrinkage at later age eventually decreased. Additionally, visual observation at long-term ages shows that the cracking area of expansive concrete was approximately 35% of normal concrete, which confirms that the use of expansive additive reduces concrete cracking in reinforced concrete buildings.

콘크리트의 균열억제 대책으로서 이용되고 있는 팽창 콘크리트를 대상으로 그 기본 특성의 파악 및 실부재로의 팽창재의 효과에 대해서 검토했다. 실내실험으로서 기본특성에 대해 검토한 결과, 팽창재의 적용에 의해 콘크리트의 건조수축 및 자기수축의 저감효과를 확인할 수 있었다. 또한, 팽창 콘크리트의 완전 구속조건 하에서의 응력-강도비는 보통 콘크리트에 비해 낮은 결과로 팽창재에 의한 인장응력의 저감효과를 확인할 수 있었다. 한편, 구속 조건하에서 팽창 콘크리트는 보통 콘크리트와 비교해 응력완화에 따른 변형능력이 향상되어 균열저항성의 향상을 기대할 수 있다고 판단된다. 실부재로의 검토에 있어서, 구속체의 영향이 작은 외벽에 있어서도 팽창 콘크리트는 초기재령에 있어 팽창에 수반하는 압축응력이 유효하게 도입되어 인장응력을 저감할 수 있다. 더욱이, 장기재령에 있어서의 균열을 평가한 결과, 팽창 콘크리트의 균열면적은 보통 콘크리트의 약 35%로 팽창재의 균열저감 효과를 확인할 수 있었다.

Keywords

References

  1. Architectural Institute of Japan, "Recommendations for Practice of Crack Control in Reinforced Concrete Buildings (Design and Construction)", AIJ, 2006.
  2. Japan Concrete Institute, "Research committee report on shrinkage of concrete", 2010.
  3. Hashida, H., Kikuchi, T., Mochida, Y., and Hirai, Y., "Evaluation for strain behaviour and stress of reinforced concrete member with expansive concrete", Proceedings of the Japan Concrete Institute, 2011, Vol.33, No.1, pp.557-562.
  4. Choi, H. G., Tsujino, M., Kitagaki, R., and Noguchi, T., "Expansion-Contraction Behaviors and Cracking Control Effects of Expansion Concrete in Buildings", The 5th International Conference of Asian Concrete Federation, 2012, ACF2012-0096, Session3-2.
  5. Hyodo, H., Tanimura, M., Fujita, H., and Banchi, S., "Influence of limestone aggregate on shrinkage properties of concrete", Proceedings of the Japan Concrete Institute, 2009, Vol.31, No.1, pp.571-576.
  6. JIS A 1129-2, "Methods of measurement for length change of mortar and concrete : Part 2:Method with contact-type strain gauge", 2010.
  7. Maruyama, I., Park, S. G., and Noguchi, T., "Properties of high performance concrete in early age under quasi-complete restraint condition", Proceedings of the Japan Concrete Institute, 2003, Vol.25, No.1, pp.485-490.
  8. Hayano, H., Maruyama, I., and Noguchi, T., "Evaluation of cracking potential of high-strength concrete induced by autogeneous shrinkage under the quasi-complete restraint condition", Journal of Structural and Construction Engineering, 2008, Vol.73, No.623, pp.19-26. https://doi.org/10.3130/aijs.73.19
  9. Hashida, H., Kikuchi, T., Tsujino, M., and Tanaka, H., "Low Shrinkage Concrete with both Expansive additive and Limestone aggregates (Part3 Initial expansion force and Shrinkage Reducing Effect)", Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 2010, pp.927-928.
  10. Momose, H., and Kanda, T., "Quantitative Estimation of Drying Shrinkage Reduction Effects due to an Expansive Additive", Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 2011, pp.1367-1373
  11. Hayano, H., Maruyama, I., and Noguchi, T., "Evaluation of Cracking Potential of High-Strength Concrete due to Autogeneous Shrinkage Under the Quasi-comolete Restraint Condition and Verification Using Micropore Volume", Taiheiyo cement kenkyu hokoku, 2010, No.158, pp.13-21.
  12. Yoneda, S., Takeda, N., Song, S., and Haga, T., "Tensile properties of concrete with low-heat cements", Proceedings of Annual conference of the Japan Society of Civil Engineers, 1992, Vol.47, No.5, pp.904-905.
  13. Kovler, K., "Testing system for determining the mechanical behaviour of early age concrete under restrained and free uniaxial shrinkage", Materials and Structures, 1994, Vol.27, No.6, pp.324-330. https://doi.org/10.1007/BF02473424
  14. Park, S. G., Maruyama, I., Noguchi, T., and Gomi, H., "Stress property of expansive concrete under simulated-complete restraint test at early age, Proceedings of the Japan Concrete Institute, 2003, Vol.25, No.1, pp.191-196.
  15. Shiraishi, R., Nakayama, H., Takao, N., and Gotoh, T., "Effects of type of cement, admixture and aggregate on the thermal expansion coefficient of hardened cement pastes and concretes", Research paper of Mitsubishi Materials Corporation Cement Research Institute, 2010, No.11, pp.33-40.