시맨틱 웹 관련연구가 증가함에 따라 지능형 에이전트 혹은 규칙기반 시스템 등의 지능적인 웹 환경에 대한 기대 역시 커지고 있다. 그러나 규칙기반 시스템의 활용에는 아직도 규칙습득이 많은 제약이 되고 있다. 이와 같은 제약을 극복하기 위해 웹 페이지로부터 규칙을 습득하기 위한 XRML 방법론이 제안되었다. XRML 방법론은 웹 페이지로부터 규칙을 식별하고 식별된 결과로부터 자동으로 규칙을 생성하는 두 단계로 구성되어 있다. 여기서 규칙의 식별은 규칙생성의 자동화 정도에 매우 중요한 영향을 미친다. 그러나 규칙을 식별하는 작업은 대부분 지식관리자의 수작업에 의존하고 있다. 이러한 지식관리자의 부담을 줄이기 위해 본 논문에서는 온톨로지 기반의 개선된 규칙식별 방법론을 제안하고자 한다. 이를 위해 먼저 OntoRule이라는 이름의 온톨로지를 설계하였다. OntoRule은 자동화된 규칙 식별을 지원하기 위해 사용되며, 규칙의 구성요소들과 구조에 대한 정보를 포함하고 있다. 그리고 OntoRule을 이용하여 규칙을 식별하는 절하를 제안하였다. OntoRule과 규칙식별 절차를 제안하는 과정에서 온톨로지 학습효과, 하향식 접근방식과 상향식 접근방식의 차이, 온톨로지 적용범위 관리, 규칙 구성요소의 식별순서, 생략된 별수의 식별과 같은 놈점들이 고려되었다. 마지막으로 실험을 통해 제안된 방법론의 효과를 보였다.
시맨틱 웹 관련연구가 증가함에 따라 하나의 관련분야로 규칙기반 시스템 동의 지능적인 웹 환경에 대한 기대 역시 커지고 있다. 하지만 규칙기반 시스템을 활용하기에는 아직도 규칙습득이 많은 제약이 되고 있다. 규칙습득은 웹으로부터 필요한 규칙을 습득하는 일련의 방법인데, 이러한 규칙을 습득하기 위해서는 규칙구성요소를 먼저 식별해야만 한다. 그러나 이러한 규칙을 식별하는 작업은 대부분 지식관리자의 수작업에 의해 이루어지고 있다. 본 연구의 목적은 웹으로부터 규칙구성요소 식별을 최대한 자동화하고 지식관리자의 수작업을 최소화함으로써 그 부담을 줄여 주는 데 있다. 이러한 방법으로는 온톨로지를 근간으로 하여 웹 페이지와의 문자열 비교, 이러한 비교의 한계를 극복하기 위한 확장등의 방법이 있다. 첫 번째 방법은 온툴로지 기반으로 규칙식별 할 웹 페이지와 비교를 통해 지식관리자의 규칙식별 과정을 최대한 자동화하여 주는 것이다. 여기서 만약 현재 규칙을 식별하고자 하는 웹 사이트와 유사한 시스템의 규칙들을 활용하여 일반화 된 온툴로지가 구축되었다면, 이 온톨로지를 기반으로 규칙을 식별하고자 하는 웹사이트와의 비교를 통해 규칙구성요소를 자동화하여 추출 할 수 있다. 이러한 온툴로지를 기반으로 규칙을 식별하기 위해서는 문자열 비교 기법을 사용하게 된다. 하지만 단순한 문자열 비교 기법만으로는 규칙을 식별하는 데에 자연어 처리에 대한 한계가 있다. 이를 극복하기 위해 다음의 두 번째 방법을 사용하고자 한다. 두 번째 방법은 정형화되지 않은 정보들을 확장하여 사용하는 것이다. 우선 찾고자 하는 단어들의 원형을 찾기 위한 스테밍 알고리즘 기법, WordNet을 이용하여 동의어 유의어등으로 확장을 하는 WordNet Expansion 기법, 의미 유사도를 측정하기 위한 방법인 Semantic Similarity Measure 등을 단계적으로 수행하여 자동화되고 정확한 규칙식별을 하고자 한다. 이러한 방법들의 조합으로 인하여 규칙구성요소 추출이 되지 않을 후보 단어들의 수를 줄여서 보다 더 정확하고, 지능적인 규칙구성요소 추출 방법론을 제시하고 구현하여 지식관리자의 규칙습득에 대한 부담을 줄여 주고자 한다.
시맨틱 웹 관련연구가 증가함에 따라 지능형 에이전트 혹은 규칙기반 시스템 등의 지능적인 웹 환경에 대한 기대 역시 커지고 있다. 그러나 규칙기반 시스템의 활용에는 아직도 규칙습득이 많은 제약이 되고 있다 이와 같은 제약을 극복하기 위해 웹 페이지로부터 규칙을 습득하기 위한 XRML 방법론이 제안되었다 XRML 방법론은 웹 페이지로부터 규칙을 식별하고 식별된 결과로부터 자동으로 규칙을 생성하는 두 단계로 구성되어 있다. 여기서 규칙의 식별은 규칙생성의 자동화 정도에 매우 중요한 영향을 미친다. 그러나 규칙을 식별하는 작업은 대부분 지식관리자의 수작업에 의존하고 있다. 이러한 지식관리자의 부담을 줄이기 위해 본 논문에서는 온톨로지 기반의 개선된 규칙식별 방법론을 제안하고자 한다. 이를 위해 먼저 OntoRule이라는 이름의 온톨로지를 설계하였다. OntoRule은 자동화된 규칙 식별을 지원하기 위해 사용되며, 규칙의 구성요소들과 구조에 대한 정보를 포함하고 있다. 그리고 OntoRule을 이용하여 규칙을 식별하는 절차를 제안하였다. OntoRule과 규칙식별 절차를 제안하는 과정에서 온톨로지 학습효과, 하향식 접근방식과 상향식 접근방식의 차이, 온톨로지 사용범위 관리, 규칙구성요소의 식별순서, 생략된 변수의 식별과 같은 논점들이 고려되었다. 마지막으로 실험을 통해 제안된 방법론의 효과를 보였다.
본 논문에서는 유전과 강하 기법(GA-GDM)을 이용해 퍼지 규칙 생성 방법을 제안하고 이들 규칙을 식별 문제에 응용해 본다. 퍼지 규칙의 조건부에 있는 추론 규칙의 수와 소속함수는 유전 방법을 이용하고,결론부의 값은 강하 기법을 이용해 규칙을 생성한다.식별 문제는 최소의 규칙으로 최대의 식별을 목적으로 한다.제안한 방법의 목적은 최소의 퍼지 규칙 생성으로 정확히 학습 패턴을 식별하는데 있다.유전 알고리즘의 적합도는 제안한 방법의 목적으로 정의한다.마직막으로 제안한 방법의 유효성을 보이기 위해 시뮬레이션 결과를 보인다.
오늘날 자원의 보고라 할 수 있는 웹에는 자연어로 표현된 텍스트와 테이블들로 구성된 무수히 많은 문서들이 존재하고 있다. 이러한 웹 문서들로부터 규칙을 습득하고 습득된 규칙과 웹 문서간의 일관성을 유지하기 위해, 본 논문에서는 확장형 규칙 표식 언어 (extensible Rule Markup Language, XRML) 체계를 개발하였다. XRML은 웹 페이지에 내재되어 있는 규칙을 식별하여 자동으로 정형화된 규칙을 생성할 수 있도록 지원하는 규칙 식별 표식 언어 (Rule Identification Markup Language, XRML)와 구조화된 규칙 표현을 위한 규칙 구조 표식 언어 (Rule Structure Markup Language)로 구성된다. 특히, RIML은 HTML안에 내재되어 있는 규칙을 HTML 문서에 직접 명시할 수 있도록 설계되었기 때문에, RIML을 통해 웹페이지에 있는 규칙들을 식별하고 이 식별된 규칙은 RSML으로 표현된 정형화된 규칙으로 자동 변환될 수 있다. 본 논문에서는 RIML의 설계 시 웹페이지로부터 규칙을 식별하는 과정에서 발생하는 공유되는 변수 (variables) 및 값 (values),생략된 어구 ,동의어와 같은 몇 가지 중요한 현상들을 발견하고 이를 해결하고자 하였다. 제안된 XRML 접근 방법의 성능을 측정하고자, 3개의 대표적인 온라인 서점인 Amazon.com, BarnesandNoble.com, Powells.com의 실제 웹페이지들로부터 배송 및 환불과 관련된 규칙을 습득하여 XRML의 효과를 측정하는 실험을 수행하였다. 실험 결과에 따르면, 웹페이지로부터 규칙은 $97.7\%$의 매우 높은 정확성을 가지고 습득되었으며, 생성된 규칙의 완전성은 $88.5\%$로 측정되어, XRML이 특정 주제에 관한 전문가 시스템을 구축하기 위해 웹페이지로부터 규칙을 추출할 때 효율적인 도구가 될 수 있음이 예시되었다.
이 논문은 대용어의 한 유형으로 인정되는 영형 대명사를 식별하기 위한 것이다. 이를 위해서는 한국어 통사 규칙들과 사전 항목들이 필요하다. 사전 항목들은 각각 자질과 값을 갖고, 통사 규칙 내부에는 이런 자질과 값들이 명세된다. 이 통사 규칙들을 토대로 하여, 발화체에 통사 구조들을 부여한다. 영형 대명사는 자질과 값을 명세한 통사 규칙을 씀으로써 식별이 가능하다. 영형 대명사는 주어와 보충어로 나뉘는데, 영형 주어는 동사가 머리인 S의 subj 자질 값이 cov(covert)일 때 식별된다. 영형 보충어는 다시 명사구와 동사구의 covc (covert complement) 자질 값이 0이 아닐 때 식별된다. 이러한 자질과 값으로 영형 대명사를 식별하는 하나의 알고리듬을 제안한다.
규칙 기반 추론 시스템에서 규칙의 속성 감축은 다양한 방법으로 제안되어 왔다. 규칙의 속성 감축은 퍼지 추론 시스템을 구현하는데 있어서 처리 시간을 단축시킬 수 있으나 규칙의 종속성 및 상관성을 고려하지 않을 경우 예상하지 못한 추론 결과를 얻을 수 있다. 따라서, 본 논문에서는 복합속성을 가진 규칙의 속성 감축과 상관성을 고려하기 위하여 러프집합의 특성 중 식별가능 행렬과 식별가능 함수를 이용하였다. 그리고 속성 감축에 사용된 규칙은 복합속성(composite attribute)을 가지는 감성 데이터를 이용하였다.
지능정보시스템 구축에 있어서 자동화가 어려운 단계중의 하나인 규칙 습득을 위해 활용되는 방법중의 하나가 제한된 언어집합 기법을 이용하는 것이다. 그러나 제한된 언어집합 기법을 이용해 규칙을 생성하기 위해서는 규칙을 구성하는 변수와 그 값들에 대한 정보가 사전에 정의되어 있어야 하는데, 유동성이 큰 웹 환경에서 예상 가능한 모든 변수와 그 값을 사전에 정의하는 것이 매우 어렵다. 이에 본 연구에서는 이러한 한계를 극복하기 위해 제한된 언어집합 기법과 온톨로지를 이용한 규칙 생성 방법론을 제시하였다. 이를 위해 지식의 습득 대상이 되는 특정 문장은 문법구조 분석기를 이용해 파싱을 수행하며, 파싱된 단어들을 이용해 규칙의 구성 요소인 변수와 그 값을 식별한다. 그러나 규칙을 내포한 자연어 문장의 불완전성으로 인해 변수가 명확하지 않거나 완전히 빠져 있는 경우가 흔히 발생하며, 이로 인해 온전한 형식의 규칙 생성이 어렵게 된다. 이 문제는 도메인 온톨로지의 생성을 통해 해결하였다. 이 온톨로지는 특정 도메인을 구성하고 있는 개념들간의 관계를 포함하고 있다는 점에서는 기존의 온톨로지와 유사하지만, 규칙을 완성하는 과정에서 사용된 개념들의 사용빈도를 기반으로 온톨로지의 구조를 변경하고, 결과적으로 더 정확한 규칙의 생성을 지원한다는 점에서 기존의 온톨로지와 차별화된다. 이상의 과정을 통해 식별된 규칙의 구성요소들은 제한된 언어집합 기법을 이용해 구체화된다. 본 연구에서 제안하는 방법론을 설명하기 위해 임의의 인터넷 쇼핑몰에서 수행되는 배송관련 웹 페이지를 선정하였다. 본 방법론은 XRML에서의 지식 습득 과정의 효율성 제고에 기여할 수 있을 것으로 기대된다.
본 논문은 소프트웨어의 취약점을 표현하기 위한 방법으로 단위 취약점을 기반으로 한 의미기반 취약점 식별자 부여 방법을 제안하고 있다. 의미기반 취약점 식별자 부여를 위해 기존의 취약점 단위를 DEVS 모델링 방법론의 SES 이론에서 사용되는 분할 및 분류(Decomposition/Specialization) 절차를 적용하였다. 의미기반 취약점 식별자는 취약점 점검 규칙 및 공격 탐지 규칙과 연관 관계를 좀 더 낮은 레벨에서 맺을 수 있도록 해주고, 보안 관리자의 취약점에 대한 대응을 좀더 편리하고 신속하게 하는 데 활용될 수 있다. 특히, 본 논문에서는 Nessus와 Snort의 규칙들이 의미기반 취약점 식별자와 어떻게 맵핑되는 지를 제시하고, 보안 관리자 입장에서 어떻게 활용 될 수 있는 지를 3가지 관점에서 정리하였다. 본 논문의 기여점은 의미기반 취약점 식별자 개념 정의 및 이를 기반으로 한 취약점 표현과 활용 방법의 제안에 있다.
인간의 감각 중 후각에 해당하는 가스 센서들에 관한 연구가 현재 상당히 이루어지고 있다. 본 논문에서는 32개의 가스 센서들로 부터 측정된 각각의 값들과 GA를 이용하여, 4개의 센서로 구성되는 8개의 센서그룹을 결정한 후 각각의 그룹에서 나타나는 측정값들의 패턴과 러프집합이론을 이용하여 1차 식별 규칙을 생성하였다. 그 다음 8개 가스 그룹의 식별 패턴을 분석하여 다시 러프집합을 통한 2차 식별 규칙을 생성함으로써 보다 효율적이면서도 판단의 정확성을 높일 수 있는 식별 모델을 설계하는 방법을 다룬다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.