• Title/Summary/Keyword: 규칙기반 방법

Search Result 1,170, Processing Time 0.027 seconds

Improving the Performance of Fuzzy Classification Using Membership Function Learning (소속 함수 학습을 이용한 퍼지 분류의 성능 개선)

  • 곽동헌;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.613-615
    • /
    • 2004
  • 수치적인 데이터를 분류하기 위한 대표적인 방법은 퍼지 규칙을 사용하는 것이다. 하지만 퍼지 규칙을 이용하는 방법은 퍼지 소속 함수를 어떻게 정의하느냐에 따라 퍼지 분류의 성능이 크게 영향을 받는다는 문제점이 있다. 따라서 퍼지 규칙을 쉽게 이해하기 위해서는 가능한 퍼지 규칙의 수를 적게 유지하는 것이 필요하다. 본 논문에서는 효과적이며 이해하기 쉬운 퍼지 규칙을 생성하기 위해 기울기 강하법을 기반으로 하는 소속 함수 학습 방법을 제안한다 에러율을 감소하기 위해 Penalty 연산과 Reward 연산을 통해 소속 함수가 반복적으로 조절된다 새로운 소속 함수는 Coverage 연산에 의해 생성된다. 또한 이해하기 쉬운 퍼지 규칙을 최적화하기 위해 학습된 소속 함수골 퍼지 결정 트리에 적용한다. 본 논문에서 제안한 알고리즘의 타당성을 확인하기 위해 벤치 마크 데이터인 Iris, Wisconsin Breast Cancer, Plma, Bupa 데이터를 이용하여 실험 결과를 보인다. 실험 결과를 통해 제안한 알고리즘이 기존의 C4.5와 FID 3.1 알고리즘보다 더 효과적이거나 비슷한 성능을 보임을 알 수 있다.

  • PDF

Time-based Expert System Design for Coherent Integration Between M&S and AI (M&S와 AI간의 유기적 통합을 위한 시간기반 전문가 시스템 설계)

  • Shin, Suk-Hoon;Chi, Sung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.59-65
    • /
    • 2017
  • Along with the development of M&S, modeling research utilizing AI technology is attracting attention because of the fact that the needs of fields including human decision making such as defense M&S are increased. Obviously AI is a way to solve complex problems. However, AI did not consider logical time such as input time and processing time required by M&S. Therefore, in this paper we proposed a "time-based expert system" which redesigned the representative AI technology rule-based expert system. It consists of a rule structure "IF-THEN-AFTER" and an inference engine, takes logical time into consideration. We also tried logical analysis using a simple example. As a result of the analysis, the proposal Time-based Expert System proved that the result changes according to the input time point and inference time.

Direct Mapping based Binary Translation Rule Generator with Considering Retargetability (재목적성을 고려한 직접 매핑 기반의 이진 변환 규칙 생성 도구)

  • Seo, Yongjin;Kim, Hyeon Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.7
    • /
    • pp.501-517
    • /
    • 2014
  • Binary translation is a restructuring process in order to execute a program targeting a specific device on the other devices. In binary translation, it is very important to generate the translation rules between two devices. There are two methods for generating the translation rules, direct and indirect mapping. The direct mapping is the method for performance, while the indirect mapping is the method for retargetability. This paper suggests a binary translation method based on the direct mapping for the embedded systems. Because, however, the retargetability is also important requirement, we suggest the direct mapping based binary translation with considering the retargetability. In addition, we implement an automatic generation tool for translation rules to prove our concept. Through this method, we can generate the translation rules with considering the performance as well as the retargetability. Furthermore, we can reduce costs for the binary translation.

Classification of emotion data using rough set on fuzzy inference (퍼지추론에서 러프집합을 이용한 감성 데이터의 분류)

  • 손창식;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.145-148
    • /
    • 2004
  • 규칙 기반 추론 시스템에서 규칙의 속성 감축은 다양한 방법으로 제안되어 왔다. 규칙의 속성 감축은 퍼지 추론 시스템을 구현하는데 있어서 처리 시간을 단축시킬 수 있으나 규칙의 종속성 및 상관성을 고려하지 않을 경우 예상하지 못한 추론 결과를 얻을 수 있다. 따라서, 본 논문에서는 복합속성을 가진 규칙의 속성 감축과 상관성을 고려하기 위하여 러프집합의 특성 중 식별가능 행렬과 식별가능 함수를 이용하였다. 그리고 속성 감축에 사용된 규칙은 복합속성(composite attribute)을 가지는 감성 데이터를 이용하였다.

  • PDF

Parsing Rules for MATES/CK (MATES/CK 중한기계번역시스템의 구문분석규칙)

  • 송영미;강원석;김지현;송희정;황금하;최기선
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.337-342
    • /
    • 2000
  • 중한기계번역시스템(MATES/CK)의 구문분석은 1120개의 구문분석규칙과 통계적 정보에 의한 확률기반에 따라 그 문장에 가장 적합한 구문트리를 찾아져 적용되는 방식으로 이루어지고 있다. 기존 구문분석 규칙은 자체에 오류가 많고, 새로운 규칙의 생성도 필요하다. 규칙에 대한 제약조건에도 좀 더 구체적이고 정확성을 높일 수 있는 상태로의 전환이 필요하다. 본 논문에서는 중한기계번역시스템(MATES/CK)의 구문분석의 정확도를 높이기 위하여 구문분석규칙을 수정하는 방법에 관하여 알아보고 그 연구과정을 살펴본다.

  • PDF

A Korean Grammar Chacker Founded on Expanded Lexical Disambiguation Rule and Partial Parsing (확장한 어휘적 중의성 제거 규칙에 따른 부분 문장 분석에 기반한 한국어 문법 검사기)

  • Park, Su-Ho;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.516-522
    • /
    • 2001
  • 본 논문에서는 한국어 형태소 분석기가 처리할 수 없는 어휘적 중의성 해결을 위한 방법으로 부분 문장 분석 기법을 연구한다. 부분 문장 분석 기법의 신뢰도를 높이기 위해서 말뭉치를 이용한 데이터를 통해 학습한 경험적 규칙을 이용한다. 학습한 경험적 규칙을 오류 유형에 따라 확장하고 전문화하여 축적된 연구결과를 지식 베이스로 삼아 한국어 맞춤법 및 문법 검사기에서 사용하는 부분 문장 분석기의 성능을 향상시킨다. 본 논문에서 사용한 확장하고 전문화한 지식 베이스는 말뭉치에서 얻은 경험적 규칙을 기반으로 한다. 이 경험적 규칙은 언어적 지식을 기반으로 한다.

  • PDF

Rule based Semi-Supervised Learning Gomoku Game AI Framework for Control Game Environment (게임 환경을 통제할 수 있는 규칙 기반 Semi-Supervised Learning 오목 인공지능 프레임 워크)

  • Kim, Sun-Min;Gu, Bon-Woo
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.618-620
    • /
    • 2022
  • 게임은 수많은 NPC 와 규칙에 의해 작동되는 가상 공간을 의미한다. 이런 가상 공간에서는 규칙을 엄격히 지키면서 수행되는 AI 를 필수로 요구하게 된다. 하지만 강화 학습 기반의 AI 는 복잡한 게임의 규칙을 온전히 지키지 못하고 예상 밖의 행동을 돌출하면서 이를 해결하기 위한 많은 연구도 수행되고 있다. 본 논문에서는 규칙 기반으로 획득한 오목판의 확률 맵과 학습을 통해 획득한 확률맵 데이터를 병합하여 가장 높은 Value 를 가지는 위치를 다음 수로 반환하는 방법을 사용하였다. 향후 연구에서는 ANN(Approximate Nearest Neighbor)알고리즘을 적극 활용하여, 커널의 State 와 보드의 State 비교를 확률적으로 개선할 예정이다. 본 논문에서 제안된 프레임 워크는 게임 AI 연구에 기여할 수 있길 바란다.

Markov Models based Classification of Fingerprint Structural Features (마코프 모텔 기반 지문의 구조적 특징 분류)

  • Jung Hye-Wuk;Won Jong-Jin;Kim Moon-Hyun
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.33-38
    • /
    • 2005
  • 지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.

  • PDF

Korean Part-of-Speech Tagging Error Correction Method Based on Statistical Decision Graph Learning (통계적 결정 그래프 학습 방법을 이용한 한국어 품사 부착 오류 수정)

  • Ryu, Won-Ho;Lee, Sang-Zoo;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.123-129
    • /
    • 2001
  • 지금까지 한국어 품사 부착을 위해 다양한 모델이 제안되었고 95% 이상의 높은 정확도를 보여주고 있다. 그러나 4-5%의 오류는 실제 응용 분야에서 많은 문제를 야기시킬 수 있다. 이러한 오류를 최소화하기 위해서는 오류를 분석하고 이를 수정할 수 있는 규칙들을 학습하여 재사용하는 방범이 효과적이다. 오류 수정 규칙을 학습하기 위한 기존의 방법들은 수동학습 방법과 자동 학습 방법으로 나눌 수 있다 수동 학습 방법은 많은 비용이 요구되는 단점이 있다. 자동 학습 방법의 경우 모두 변형규칙 기반 접근 방법을 사용하였는데 어휘 정보를 고려할 경우 탐색 공간과 규칙 적용 시간이 매우 크다는 단점이 있다. 따라서 본 논문에서는 초기 모델에 대한 오류 수정 규칙을 효율적으로 학습하기 위한 새로운 방법으로 결정 트리 학습 방법을 확장한 통계적 결정 그래프 학습 방법을 제안한다. 제안된 방법으로 두 가지 실험을 수행하였다. 초기 모델의 정확도가 높고 말뭉치의 크기가 작은 첫 번째 실험의 경우 초기 모델의 정확도 95.48%를 97.37%까지 향상시킬 수 있었다. 초기 모델의 정확도가 낮고 말뭉치 크기가 큰 두 번째 실험의 경우 초기 모델의 정확도 87.22%를 95.59%로 향상시켰다. 또한 실험을 통해 결정 트리 학습 방법에 비해 통계적 결정 그래프 학습 방법이 더욱 효과적임을 알 수 있었다.

  • PDF

Interval-Valued Fuzzy Set Backward Reasoning Using Fuzzy Petri Nets (퍼지 페트리네트를 이용한 구간값 퍼지 집합 후진추론)

  • 조상엽;김기석
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.559-566
    • /
    • 2004
  • In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval -valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner. This paper presents fuzzy Petri nets and proposes an interval-valued fuzzy backward reasoning algorithm for rule-based systems based on fuzzy Petri nets Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The algorithm we proposed generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The proposed interval-valued fuzzy backward reasoning algorithm can allow the rule-based systems to perform fuzzy backward reasoning in a more flexible and human-like manner.

  • PDF