• Title/Summary/Keyword: 규산나트륨

Search Result 67, Processing Time 0.03 seconds

Sulfate Resistance of Alkali-Activated Materials Mortar (알칼리 활성화 결합재 활용 모르타르의 황산염 침식 저항성)

  • Park, Kwang-Min;Cho, Young-Keun;Lee, Bong-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • This paper presents an investigation into the durability alkali-activated materials(AAM) mortar and paste samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS) exposed to a sulfate environment with different GGBFS replace ratios(0, 30, 50 and 100%), sodium silicate modules($Ms[SiO_2/Na_2O]$ 1.0, 1.5 and 2.0) and initial curing temperatures($23^{\circ}C$ and $70^{\circ}C$). The tests involved immersions for a period of 6 months into 10% solutions of sodium sulfate and magnesium sulfate. The evolution of compressive strength, weight, length expansion and microstructural observation such as x-ray diffraction were studied. As a results, as higher GGBFS replace ratio or Ms shown higher compressive strengths on 28 days. In case of immersed in 10% sodium sulfate solution, the samples shows increase in long-term strength. However, for samples immersed in magnesium sulfate solutions, the general observation was that the compressive strength decreased after immersion. The most drastic reduction of compressive strength and expansion of weight and length occurred when GGBFS or Ms ratios were higher. Also, the XRD analysis of samples immersed in magnesium sulfate indicated that expansion of AAM caused by gypsum($CaSO_4{\cdot}2H_2O$); the gypsum increased up to 6 months continuously.

An Experimental Study on the Compressive Strength of Concrete using Granulated Blast Furnace Slag (알칼리 활성 고로 슬래그 콘크리트의 압축강도 발현특성에 관한 실험적 연구)

  • Song, Jin-Kyu;Lee, Kang-Seok;Yang, Keun-Hyeok;Song, Ho-Bum;Kim, Bteong-Jo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.555-556
    • /
    • 2009
  • The purpose of this study is to estimate compressive strength of concrete using granulated blast furnace slag. We used Sodium silicate, Potassium silicate, Barium hydroxide as alkali activators and Calcium hydroxide to develop water resistance.

  • PDF

Effect of Catalysts on Preparation of Mullite Precursor Using Silicic Acid Extracted by THF from Sodium Silicate (규산 나트륨으로부터 THF에 의해 추출된 규산을 이용한 Mullite 전구체 제조시 촉매에 대한 영향)

  • 정흥호;박은희;김도수;정호승;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.517-523
    • /
    • 2000
  • Effect of catalysts, which was catalyzed by acid(HCl and HNO3) and base(NH4OH), on characteristics of the mullite powders prepared by sol-gel methdo wa sinvestigated by XRD, TGA, SEm AND BET. As a result, weight loss as a function of catalysts was in order of HCl=32.6%>HNO3=25.44%>Non=24.0%>NH4OH=22.5%. The mullite powder dried at 100$^{\circ}C$ appeared spherical shape in acid catalyst and different shape in base catalyst, but sintering powder at 1400$^{\circ}C$ appeared very fine particle of 0.05∼0.1$\mu\textrm{m}$ regardless of catalysts. In all cae, the pore quantity, which was capable to adsoprtion, was decreased with increasing temperature. In base catalyst, no change of special surface area in mullite appeared.

  • PDF

Preliminary Study for the Development of Alkali Activated Natural Hwangtoh Binder (알칼리활성 천연황토 결합제 개발을 위한 기초연구)

  • Kim, Baek-Joong;Kim, Jun-Hwan;Yi, Chong-Ku;Kang, Kyung-In
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.389-390
    • /
    • 2010
  • this study is preliminary experimental research for develop methods to utilize the natural Hwangtoh as replacement materials for the cement in concrete, via alkali activation at $60^{\circ}C$ using NaOH solution and liquefied $Na_2SiO_3$ in a manufacture process of Hwangtoh concrete binder.

  • PDF

Hydration of Granulated Blastfurnace Slag in the Presence of Sodium Silicate (규산나트륨에 의한 고로 수쇄슬래그의 수화반응)

  • 송종택;이용민
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.538-542
    • /
    • 1994
  • The kinetics and mechanism on the hydration of granulated blastfurnace slag-sodium silicate systems were studied by ignition loss, unreacted slag determination, XRD, DTA and SEM(EDS). From this experiment the following results were obtained. The amount of slag reaction was increased with the content of sodium silicate and also C-S-H, C4AH13, and C2ASH8 were formed to be the main products up to 28 days of hydration. Sodium silicate was not only an activator for slag hydration but also a binder in the hydration. The amount of slag reaction activated by sodium silicate was a nearly same for Ca(OH)2 activated slag, but it was smaller one than that activated by NaOH. However there was no difference in hydration products.

  • PDF

Manufacture and Applications of Cellular Glass for Recycling Waste Glass (폐유리 재활용을 위한 발포유리의 제조 및 활용 기술)

  • Jeon, Bae-Ho;Kim, Jung-Gon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.241-242
    • /
    • 2017
  • 본 논문에서는 폐유리를 재활용하는 발포유리에 대한 기술 및 활용방법에 대한 고찰을 통해 국내에서 적용 가능한 폐유리 재활용기술에 대하여 검토하였다. 폐유리를 재활용한 발포유리는 폐유리를 분쇄한 유리 미분에 규산나트륨, 탄산칼슘, 그라파이트 등의 발포제를 첨가하여 형틀에 넣고 가열을 하면, 유리분말은 소결(sinter)상태가 되는 약 $800^{\circ}C$ 정도가 되면 녹기 시작하고, 발포제는 분해되어 $O_2$와의 반응에서 발생하는 $CO_2$ 가스에 의한 기포가 발생하여 발포유리가 형성되는 제조 방식이다. 이러한 발포유리 방식으로 제작된 판재 및 배관 형태의 불연재료는 건설 및 LGN선박용으로 널리 활용되고 있고, 인공경량 골재의 형태는 건설용 채움재 및 빗물 저류용, 정화용으로 활용되고 있다. 이러한 활용 방식은 국내에서도 충분히 적용 가능한 방식이며, 국내에서의 적용을 통해 폐기물 및 환경부하 저감 효과를 높일 수 있다.

  • PDF

Microstructure and Strength of Class F Fly Ash based Geopolymer Containing Sodium Sulfate as an Additive (황산나트륨 첨가제에 따른 플라이애시 기반 지오폴리머의 미세구조 및 강도 특성)

  • Jun, Yubin;Oh, Jae-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.443-450
    • /
    • 2015
  • This paper presents an investigation of the mechanical and microstructural properties of Class F fly ash based geopolymer containing sodium sulfate as an additive. Sodium sulfate was used as an chemical additive at the dosage levels of 0, 2, 4, and 6wt% of fly ash. Sodium hydroxide and sodium silicate solutions were used to activate fly ash. The compressive strengths of geopolymer pastes were measured at the age of 28 days. The microstructures of the geopolymer pastes were examined using XRD, MIP and SEM tests. The additions of 2wt% and 4wt% sodium sulfate produced geopolymers with high strength, while increasing the dosage of levels to 6% resulted in almost no changes in strength, comparing with the control geopolymer. The optimum increase in strength was obtained with the addition of 4wt% sodium sulfate. As the amount of sodium sulfate is increased, no additional crystalline phase was detected and no change of amorphous phase indicated despite the change in the strength development. The increase in the strength was due to the change of pore size distribution in samples. As addition of sodium sulfate altered the morphologies of reactive productions and Si/Al ratios of the reaction products, the strengths were thus affected. It was found that the strengths of geopolymer were larger for lower Si/Al ratios of reaction products formed in samples. The optimal amount of sodium sulfate in the fly ash based geopolymer helps to improve mechanical properties of the geopolymer, on the other hand, the high percentage of sodium sulfate could exist as an impurity in the geopolymer and hinder the geopolymer reaction.

Preparation of Silica Coated Zinc Oxide and UV Protection Effect (이산화규소가 코팅된 산화아연의 제조와 자외선 차단 특성)

  • Kim, Won Jong;Kang, Kuk Hyoun;Lee, Gi Yong;Kim, Tae Won;Choi, Jong Wan;Lee, Dong Kyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.121-131
    • /
    • 2014
  • Due to the high UV light scattering effect of Zinc oxide (ZnO), it is frequently used in sunscreen skincare products. Recently ZnO coated with silica has been used in cosmetics to improve UV protection, texture, decreased photocatalytic activity, dispersibility and stability of the skin care product. In this study, we developed a ZnO composite powder coated with silica for the future application to skincare products to block UV rays that could cause photoaging. To improve consumer's satisfaction rating, we used ZnO microparticles which are widely used in the cosmetics industry. The silica was coated using hydrothermal method with sodium silicate and acid hydrolysis. UV protection of the composite powder was analyzed by UV-Vis and in-vitro test and the advantages for practical use of this powder as a skincare product were determined.

Effect of Polymer Post-treatment on the Durability of 3D-printed Cement Composites (3D 프린터로 출력된 시멘트 복합체의 내구성에 미치는 폴리머 후처리의 영향)

  • Seo, Ji-Seok;Hyun, Chang-Jin;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.20-29
    • /
    • 2022
  • In this study, in order to improve the durability of the cement composite printed with the ME type 3D printer, PDMS, sodium silicate, and a surface hardener were employed. Post-treatment was performed on 3D-printed cement composite by coating after immersion, and the degree of improvement in durability was evaluated. As a result, in all evaluations, the durability performances of the post-processed specimens were improved compared to those of the plain specimens. Water absorption resistance, chloride penetration resistance, and carbonation resistance of the PDMS treated specimens were improved by 36.3 %, 77.1 %, and 50.4 % when compared to plain specimens. Freeze-thaw resistance of the specimens treated with sodium silicate was found to be the most excellent, with an average enhancement of 47.5% compared to plain specimens. It was found that PDMS was the most efficient post-treatment materials for 3D-printed cement composite. However, as suggested in this study, the post-treatment method by coating after immersion may not be applicable to cement composite structures printed with a 3D printer in field. Therefore, a follow-up study needs to be preformed on the durability enhancing materials suitable for 3D printing.

Preparation of Spherical Silica by Water/oil Microemulsion with Minimal Oil Content (오일 양이 최소화된 물/오일 에멀젼을 통한 구형 마이크로 크기 실리카 합성)

  • Pyo, Eunji;Cha, Yeona;Kang, Donggyun;Kwon, Ki-Young
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.635-638
    • /
    • 2020
  • We prepared spherical silica by minimizing the amount of oil through water/oil (W/O) emulsion. The spherical silica was successfully synthesized by using 20 to 60 mL of hexane as an oil for 283 g of water glass. The size of silica was dependent on the amount of oil where the size of silica particles increased as the amount of oil increased. The specific surface areas of samples measured using the BET method were 186 to 230 ㎡/g. X-ray fluorescence (XRF) analysis results showed that the SiO2 content was more than 90% while sodium was 3.27~4.5 wt. %. The spherical silica prepared in this study could be optimized for mass synthesis and commercialization because the industrial sodium silicate solution was used as a precursor of Si as well as the minimum amounts of hexane and nonionic surfactant were employed.