Browse > Article
http://dx.doi.org/10.14478/ace.2020.1083

Preparation of Spherical Silica by Water/oil Microemulsion with Minimal Oil Content  

Pyo, Eunji (Department of Chemistry and RINS, Gyeongsang National University)
Cha, Yeona (Department of Chemistry and RINS, Gyeongsang National University)
Kang, Donggyun (GIANT CHEMICAL)
Kwon, Ki-Young (Department of Chemistry and RINS, Gyeongsang National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.6, 2020 , pp. 635-638 More about this Journal
Abstract
We prepared spherical silica by minimizing the amount of oil through water/oil (W/O) emulsion. The spherical silica was successfully synthesized by using 20 to 60 mL of hexane as an oil for 283 g of water glass. The size of silica was dependent on the amount of oil where the size of silica particles increased as the amount of oil increased. The specific surface areas of samples measured using the BET method were 186 to 230 ㎡/g. X-ray fluorescence (XRF) analysis results showed that the SiO2 content was more than 90% while sodium was 3.27~4.5 wt. %. The spherical silica prepared in this study could be optimized for mass synthesis and commercialization because the industrial sodium silicate solution was used as a precursor of Si as well as the minimum amounts of hexane and nonionic surfactant were employed.
Keywords
Silica; W/O emulsion; Hexane; Sodium silicate; Nonionic surfactant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Van Grieken, J. Aguado, M. J. Lopez-Muoz, and J. Marugan, Synthesis of size-controlled silica-supported TiO2 photocatalysts, J. Photochem. Photobiol. A, 148, 315-322 (2002).   DOI
2 R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, and J. A. Dumesic, Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts, Appl. Catal. B: Environ., 43, 13-26 (2003).   DOI
3 Y. Han, G. Hwang, H. Kim, B. Z. Haznedaroglu, and B. Lee, Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous-macroporous structure for CO2 capture, Chem. Eng. J., 259, 653-662 (2015).   DOI
4 C. Lu, F. Su, S. C. Hsu, W. Chen, H. Bai, J. F. Hwang, and H. H. Lee, Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles, Fuel Process. Technol., 90, 1543-1549 (2009).   DOI
5 T. Jesionowski, Characterization of silicas precipitated from solution of sodium metasilicate and hydrochloric acid in emulsion medium, Powder Technol., 127, 56-65 (2002).   DOI
6 J. H. Park, C. Oh, S. I. Shin, S. K. Moon, and S. G. Oh, Preparation of hollow silica microspheres in W/O emulsions with polymers, J. Colloid Interface Sci., 266, 107-114 (2003).   DOI
7 J. Esquena, T. F. Tadros, K. Kostarelos, and C. Solans, Preparation of narrow size distribution silica particles using microemulsions, Langmuir, 13, 6400-6406 (1997).   DOI
8 S. G. Lee, Y. S. Jang, S. S. Park, B. S. Kang, B. Y. Moon, and H. C. Park, Synthesis of fine sodium-free silica powder from sodium silicate using w/o emulsion, Mater. Chem. Phys., 100, 503-506 (2006).   DOI
9 B. P. Binks and S. O. Lumsdon, Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobie silica, Langmuir, 16, 2539-2547 (2000).   DOI
10 D. G. Kang, K. D. Kim, and H. T. Kim, Silica nanoparticles prepared by W/O microemulsion Method at Acid/Base Conditions, J. Ind. Eng. Chem., 11, 500-504 (2000).
11 J. H. Park, S. C. Chung, C. Oh, S. I. Shin, S. S. Im, and S. G. Oh, Preparation and size control of spherical silica particles using W/O emulsion, J. Ind. Eng. Chem., 13, 502-508 (2002).
12 W. Stober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62-69 (1968).   DOI
13 D. Niu, Z. Ma, Y. Li, and J. Shi, Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness, J. Am. Chem. Soc., 132, 15144-15147 (2010).   DOI
14 A. K. Van Helden, J. W. Jansen, and A. Vrij, Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents, J. Colloid Interface Sci., 81, 354-368 (1981).   DOI
15 J. Liu, S. Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Zhao, and G. Q. Lu, Extension of the stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres, Angew. Chem. Int. Ed., 50, 5947-5951 (2011).   DOI
16 T. Nakamura, M. Mizutani, H. Nozaki, N. Suzuki, and K. Yano, Formation mechanism for monodispersed mesoporous silica spheres and its application to the synthesis of core/shell particles, J. Phys. Chem. C, 111, 1093-1100 (2007).   DOI
17 T. Suteewong, H. Sai, R. Cohen, S. Wang, M. Bradbury, B. Baird, S. M. Gruner, and U. Wiesner, Highly aminated mesoporous silica nanoparticles with cubic pore structure, J. Am. Chem. Soc., 133, 172-175 (2011).   DOI
18 B. L. Newalkar and S. Komarneni, Control over microporosity of ordered microporous-mesoporous silica SBA-15 framework under microwave-hydrothermal conditions: Effect of salt addition, Chem. Mater., 13, 4573-4579 (2001).   DOI
19 J. M. Kim and G. D. Stucky, Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers, Chem. Commun., 13, 1159-1160 (2000).
20 B. Knoblich and T. Gerber, The arrangement of fractal clusters dependent on the pH value in silica gels from sodium silicate solutions, J. Non-Cryst. Solids, 296, 81-87 (2001).   DOI
21 S. C. K. H. C. Park, The characteristic control of spherical silica particle using by W/O type emulsion(1), J. Korean Oil Chemist. Soc., 23, 1-11 (2006).
22 B. R. Midmore, Effect of aqueous phase composition on the properties of a silica- stabilized W/O emulsion, J. Colloid Interface Sci., 213, 352-359 (1999).   DOI
23 J. H. Park, S. Y. Bae, and S. G. Oh, Fabrication of hollow silica microspheres through the self-assembly behavior of polymers in W/O emulsion, Chem. Lett., 32, 598-599 (2003).   DOI
24 S. Yun, H. Luo, and Y. Gao, Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: Rapid synthesis via ambient pressure drying and excellent absorption properties, RSC Adv., 4, 4535-4542 (2014).   DOI
25 A. Rahman, D. Seth, S. K. Mukhopadhyaya, R. L. Brahmachary, C. Ulrichs, and A. Goswami, Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine, Naturwissenschaften, 96, 31-38 (2009).   DOI
26 F. Rancan, Q. Gao, C. Graf, S. Troppens, S. Hadam, S. Hackbarth, C. Kembuan, U. Blume-Peytavi, E. Ruhl, J. Lademann, and A. Vogt, Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability, ACS Nano, 6, 6829-6842 (2012).   DOI
27 D. Napierska, L. C. J. Thomassen, D. Lison, J. A. Martens, and P. H. Hoet, The nanosilica hazard: Another variable entity, Part. Fibre Toxicol., 7, 39 (2010).   DOI