• Title/Summary/Keyword: 궤도 각운동량

Search Result 12, Processing Time 0.029 seconds

A Three-layered Optical Waveguide of Second-order Orbital Angular Momentum Mode Guiding for Photonic Integrated Circuit (3층 구조를 가지는 광 집적회로용 2차 궤도 각운동량 광 도파로)

  • Lee, In-Joon;Kim, Sang-In
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.645-650
    • /
    • 2019
  • In this paper, a specifically designed waveguide structure that can carry first, and second-order orbital angular momentum(: OAM) mode is proposed. The proposed optical waveguide consists of three Si stripes embedded in $SiO_2$, which is suitable for implementing on-chip integration and fabrication by standard thin film deposition and etching processes. The second-order OAM mode was generated by combining two eigenmodes, which are calculated by finite difference method(: FDM). The topological charge number of the first, and second-order OAM mode was calculated as l=0.9642 and 1.8766 respectively, which is close to the theoretical value.

Silicon Electro-optic Orbital Angular Momentum Sign Modulator for Photonic Integrated Circuit (광 집적회로용 실리콘 기반 궤도 각운동량 부호 변환기)

  • Lee, In-Joon;Kim, Sang-In
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.659-664
    • /
    • 2020
  • In this paper, we propose a silicon-based electro-optic (EO) modulator which can modulate a sign of a topological charge number l of |l|=1 orbital angular momentum (OAM) mode. The proposed EO modulator consists of position-dependent doped Si waveguide core and undoped SiO2, cladding, which enables control of the effective index and propagation loss of two OAM constitutive eigenmodes. The modulator functions as OAM mode maintaining waveguide at -0.33V and as topological charge sign inverter at 10V. The output OAM mode purity is calculated through electric field distribution, showing high purity of |l|>0.92 in both cases.

Technology Trends of Radio Orbital Angular Momentum Mode (전파 궤도 각운동량 모드 기술 동향)

  • Byun, W.J.;Hong, J.Y.;Lee, W.J.;Kim, J.B.;Kim, B.S.;Kang, M.S.;Kim, K.S.;Song, M.S.;Lee, H.J.;Cho, Y.H.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.3
    • /
    • pp.46-55
    • /
    • 2017
  • 빛이 편파(수직/수평 편파, 원편파) 속성 외에 각운동량 속성도 존재한다는 것이 1992년 Allen에 의해 실험적으로 처음 확인되었다. 그리고 2011년 Thide는 전파에서도 같은 속성이 있음을 또한 확인하였다. 그 이후, 많은 연구자들이 전파 궤도 각 운동량에 관한 연구 결과를 발표하였다. 본고에서는 전파 궤도 각운동량의 개념과 최근 기술 동향, 그리고 그것의 한계에 대해서 살펴보았다.

Spin-orbit Coupling Effect on the Structural Optimization: Bismuth Telluride in First-principles (스핀-궤도 각운동량 상호작용의 구조 최적화에 대한 효과: 비스무스 텔루라이드의 제일원리 계산의 경우)

  • Tran, Van Quang;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Spin-orbit coupling (SOC) effect is known to be the physical origin for various exotic magnetic phenomena in the low-dimensional systems. Recently, SOC also draws lots of attention in the study on magnetically doped thermoelectric alloys to determine their properties as the thermoelectric application as well as the topological insulator via the exact electronic structures determination near the Fermi level. In this research, aiming to investigate the spin-orbit coupling effect on the structural properties such as the lattice constants and the bulk modulus of the most widely investigated thermoelectric host material, $Bi_2Te_3$, we carried out the first-principles electronic structure calculation using the all-electron FLAPW (full-potential linearized augmented plane-wave) method. Employing both the local density approximation (LDA) and the generalized gradient approximation (GGA), the structural optimization is achieved by varying the in-plane lattice constant fixing the perpendicular lattice constant and vice versa, to find that the SOC effect increases the equilibrium lattices slightly in both directions while it markedly reduces the bulk modulus value implying the strong orientational dependence, which are attributed to the material's intrinsic structural anisotropy.

Searching for Eccentricity Preserving Mass Transfer Mechanism during Binary Star Evolution

  • Lee, Hyun Taek;Kwak, Kyujin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.78.1-78.1
    • /
    • 2016
  • 상호작용 하는 쌍성계의 진화과정 중 질량이동에 의한 궤도 변화에는 아직 풀리지 않은 수수께끼가 남아있다. 예를 들면 바륨별 (Ba Star)의 경우, 관측된 궤도 이심률은 평균 0.2, 1000일 단위의 주기를 보여주고 있다. Population Synthesis시뮬레이션으로 이를 재현할 경우 관측된 궤도 성질을 맞추지 못하거나, 바륨별의 형성 개수를 맞추지 못하는 문제점이 있다. 비슷한 문제가 청색낙오성 (Blue Straggler Star)의 시뮬레이션 결과에서도 나타나고 있는데, 이 문제의 핵심은 Roche Lobe Over Flow (RLOF)를 통한 질량 이동이 결과적으로 Common Envelope (CE)으로 이어지기 때문에 각운동량을 크게 잃게 되어 궤도가 원형화 되기 때문인 것으로 판명이 되었다. 따라서 이번 연구에서는 RLOF를 통한 질량이동 중 CE 과정을 효과적으로 피해갈 수 있는 질량이동 과정을 제안하고, 이를 시뮬레이션에 적용하여 관측자료를 설명할 것이다. 최종적으로는, 위의 질량이동 과정을 오픈 소스 항성진화 프로그램인 MESA에 포함시켜, 쌍성계 궤도와 그 별들의 표면 원소 분포 사이의 상관관계를 정량적으로 설명하려고 한다.

  • PDF

THE MASS AND ANGULAR MOMENTUM RELATION OF ECLIPSING BINARIES (식쌍성의 질량과 궤도 각운동량 관계)

  • Oh, Kyu-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.83-90
    • /
    • 1998
  • With a total 2780 eclipsing binary systems in the Catalogue of Approximate Photometric and Absolute Elements of Eclipsing Variable Stars by Svechnikov & Kuznetsova(1990), the empirical relations between the systemic mass and orbital argular momentum have been examined. It is found that, during the its evolution, the total orbital argular momentum of the eclipsing binary sustem is not conserved. It decreases gradually, though not at a constant rate, until the system becomes into contact from initially detached via semi-detached system.

  • PDF

The Magnetic Structure and Magnetic Anisotropy Energy Calculations for Transition Metal Mono-oxide Clusters (전이금속산화물 클러스터의 자기구조 및 자기이방성에너지 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • We have studied magnetic structure and magnetic anisotropy energy of cubic transition metal mono-oxide cluster FeO and MnO using OpenMX method based on density functional method. The calculation results show that the antiferromagnetic spin arrangement has the lowest energy for FeO and MnO due to the superexchange interactions. The magnetic anisotropy is only found for antiferromagnetically ordered FeO cluster, since occupied electron of 3d down-spin level induces the spin-orbit couplings with <111> directed angular momentum.

A Study of the Cubic Field Splitting Parameter 10Dq by Means of One-Center Expansion of Complex MO (착물 분자궤도함수의 일점 전개에 의한 입방결정장 분열 파라미터 10Dq의 고찰)

  • Hojing Kim;Sangyoub Lee
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.67-77
    • /
    • 1978
  • MO's of a complex are expanded in terms of the set of Shull-Lowdin functions based on a single point, the nucleus of central metal ion, and the result was interpreted from the viewpoint of perturbation theory. We find that even in the case of $[NiF_6]^{4-}$, which has relatively small covalency, excited configurations with high orbital angular momentum are considerably mixed into $e_g$ and $t_{2g}$, orbitals of central metal ion, and that the distortions in these orbitals differ from each other. Therefore it is concluded that the energy difference between $e^*_g$ and $t^*_{2g}$, orbitals evaluated in the MO scheme has little meaning of the unique parameter 10Dq in the crystal field theory, and that such a unique parameter cannot be defined in a rigorous sense in the MO scheme.

  • PDF

First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride (Gd 도핑된 비스무스 텔루라이드의 자기적 성질에 대한 제일원리 계산 연구)

  • Van Quang, Tran;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.