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ABSTRACT. MO’s of a complex are expanded in terms of the set of Shull-Léwdin functions
based on a single point, the nucleus of central metal ion, and the result was interpreted from the
viewpoint of perturbation theory. We find that even in the case of [NiFs]*", which has relatively
small covalency, excited configurations with high orbital angular momentum are considerably mixed
into ¢, and ¢, orbitals of central metal ion, and that the distortions in these orbitals differ from
each other, Therefore it is concluded that the energy difference between e} and 5 orbitals
evaluated in the MO scheme has little meaning of the unique parameter 10Dq in the crystal field
theory, and that such a unique parameter cannot be defined in a rigorous senes in the MO scheme.

the complexes of d" configurations cubic crystal
1. INTRODUCTION field splitting parameter Dgq, inter-electron
In the scope of crystal field theory, the gap

repulsion parameter F, and F,;, spin-orbit in-

between any two energy levels of the central
ion perturbed by the coordination of ligands can
be expressed in terms of some parameters. For

teraction parameter £,, etc, are used. 1™* In most
applications these parameters are replaced by the

empirical values.3™* Attempts to calculate
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these parameters from first principles have led
to results that disagree considerably with the
empiriczlly deduced values™, One defect in-
herent in the crystal field theory is that one can
know noting but the smmetry of the effective
The usual
moadels for this potential neglect the details of

potential resulting from ligations.

chemical nature of bonding between the central
metal and ligands. The other reason for the
failure is the defect of the assumptions premised
in defining above parameters. We shall give a
brief survey on this point in the following
section.

An essential turning point was made by
Sugano and Shulman who performed a molecular
orbital calculation of both “10Dq” and LCAO
wave functions of [NiF¢]*™ ion. They obtained
excellent results which agrees well with ex-
periments. 1% However, one has not been able
to derive the relations which express the energy
eigenvalue spectrum of complex molecules in
terms of above parameters within the framework
of MO method. The “10Dq” so calculated with
the MO scheme could not have the meaning of
10Dq defined in the crystal field theory, and it
might be illegitimate to adapt the MO results
for the parametric relations from crystal field
theory. The purpose of present work is to
examine this point.

2. CUBIC CRYSTAL FIELD SPLITTING
PARAMETER
(1) 10 Dq in the Primitive Crystal Field
Theory. The crystal field potential for an
octahedral complex can be expanded as follows:

Vi=Ry(n Y58, 0) + Ry (N Y8, )
+ Re(r) YE(8, @) + -+ W

where the summation is over all electrons of
central metal ion, and Y§(8,¢) is the symme-
try-adapted linear combination (SALC) of
spherical harmonics of order I which belongs to

A, representation of point group O,.
If the unperturbed d orbitals of free metal
ion are given by

Pe™= sz (?’) Yé (9s (.D)
Pe= Rz (N Yi(0, ¢) (2

where Y!(8,¢) and Yi(0,¢) are the SALC's
of spherical harmonics which belong to E, and
Ty, representation respectively, then the dif-
ference between the first order perturbation

energies in these is

€P—eP={p | Viloo — <ot Vile
=Rz | Ry| Rp) (Y3 Y3 YD

—{Y3| Y5 Y5}
={Rn|Rs|Ry2>- K (K:constant) (3)

The primitive crystal field theory defines this
single integral term multiplied by a constant
from the angular part integral as 10Dq, and
takes its value from experiments,

But the empirical value must be the energy
difference resulting from “total perturbation”,
that is, it includes all the higher crder pertur-
bation erergy corrections;

de,—de;=(€P+eP+ePteem)
— (P + D+ D e )
= (P +eP) — (eP+e)
= (€7 —€V) + (V=) @

So that above definition of 10Dq tears the as-

sumption
PP —e® 5)

But it may be wong although the general

€™ and  €@DDe®  are

assumptions that
valid.

Actually the failure of theortical calculation
of 10Dq according to Eq. (3) is not only due
to the defect of R, given by simple model
potential neglecting the covalency but also due
to neglecting the higher order perturbation cor-

rection, It is conceived that the Ilatter fault

Journal of the Korean Chemical Society



Z2E EAN G 24 AN A% IE2FF ¥4 sebo)E 10Dg ) 2% 63

makes the discrepancy between theoretical and
empirical values more significant than the defect
of simple model potential, at least in the “ionic”
complexes. 115 of course, the covalency effect
becomes more significant in the “covalent”
complexes.

(2) Effect of Total Perturbation. If the
©e ¢ Otbitals of free metal ion becomes ¢, ¢,
by the perturbation due to ligation, the Integral
Hellmann-Feynman theorem! gives the total
perturbation energy (the sum of the perturbation
energies of all order) difference by

e = S Vilo'> — Lgul Vilos>
deomde= el (el ®

Here, if it could be assumed to a good
approximation that only the radial part of
o, and ¢, are distorted by the perturbotion
and that the radial distortions in these are
equal to each other, that is,

s =Rs(r)Y: (6,¢)
o' =Ra(r)Y (6, 9) @
(Rd (.f‘) = g; C.I'R,.'z(f)) ’

then from Eq. (6) de¢,—de, is given by single
term:

Ry Ry Rp)

RalRy X &)

de,—de,=

This result suggests that the quantity given by
Eq. (8) be the actual parameter 10Dq replaced
with the empirically deduced value. Ir fact it
can be shown that if above assumption (Eq.
(7)) is valid, there results simple scaling of the
parameter 10Dq and inter-electron repulsion
parameter F, along the lines suggested above, 16

Now consider the case in which the perturbed
wave functions ¢., and ¢, contain the excited
configurations with higher orbital angular mo-
mentum than d orbital (angular distortion} and
have unequal radial distortions:

0/ =R{(YL(0,0) +R; (1) Yi(8, ) +-veee
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¢ =Ry (r)Y3(0, ) + R (1Y (8, 0) + oo
()
where RS(r)%R5(r), R (r)XRE (), and so
forth.

In this case,

de=p—igrs [(RaYi|RiY+RYIIRSYS)

H{RY{ IRYI+RYEIRIY D
HRY S RY{HRY S+ RY S RIYE

dei= s (R Y | RV + RYTIRSY D
FCRY § | RY §HRYE | REY >+ +eveee]
611))
Unfortunate as it is, the value of Jde,—4e,
cannot be expressed in a single term as in the
previous case. So this value cannot be para-
meterized to give the energy gaps between
other energy levels. That is, it is merely the
energy difference between the perturbed states,
¢, and ¢, and has ne more significance.

3. ONE-CENTER EXPANSION OF
LCAOMO OF A COMPLEX ION

In this section we expand the ef and £},
orbitals of [NiF;]*", which correspond to ¢,
and ¢; respectively, in terms of the set of
Shull-Léwdin functions based on a single point,
the nucleus of Ni?* jon. The wave functions
of [NiFg)*™ are given by Sugano and Shulman??,

L =Nc(¢3_R:Xs_ quo) » N,=0.968,
A=0.113, A,=0.396
T,’:N,(QD‘—R,)C,), 't=0- 988’ zz=0' 249
(11
where ¢, and ¢, are the Hartree-Fock atomic
orbitals of Ni%* jon,
©e: Pu=Rag(r)Y3 (0, <P) (322—r%)
1 2 -
0= Raa(r) (2 ) (Y220, 9) + Y56, )]
(a?—y%)
o1 pe=Rau ) (5 | 121 (0, 9) +Y4(6,0)]
(¥2)
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0r=Roa (1) (55) (Y21 (6, ) — Y30, )
(z2)

SEVY 20, 0) ~Y 10,9
(zy)
with Ryg(r)=r? (3. 400672315 +45, 961~ 523
+129. 48¢73:%%r 94, 071715) and y,,%, and

%= are the SALC’s of Hartree—Fock atomic
orbitals of F~ jons (refer to Fig. 1 which

%=Rw&ﬂ

.. describes the cordinates of each ligand orbital),

. 1
: xﬂzm(zﬁf’a.s+2¢7€.:“'@1,s—§02,:_994.3—995,33

1
Xwo= _V{ﬁ (2@3.; +2@5. 2P 202, 2~ P4 2 —Ps. z)
Xw=-%- (@]_,—(;92_,-]-904. +—®s, 5

Xv‘f:_%' (@1,:"?’2, et P4, s, z)

o~

T Ye= g (P2, Py + 05,y F 01, 2)

5
n
Y5
\ Xy Ze
Yg
x .___/
6 g

Fig. 1, Coordinate system used to describe the
atomic orbitals of the six ligand atoms and the
central’ metal ion.

(z:, 91 2;) ———coordinates with origin at the nucleus
of the i-th ligand atom

(z,¥.z) -—-coordinates with origin at the nucleus
of the centaral metal ion

x:'m':%' (?71.3+§D3.:+§94,:+§56,y)

x&t:_é' ({Dl,x+@2,y+§04.y+‘p5, )
with

@i,s=Ra (r) Yo' (8;, 0:) = (—11, 156¢78-70r:
+10. 805162435 Y %(8;, )

@i,e=Rop(r) Y1°(8; 9i,) =r;(15. 671375741,
+1. 57426715853 Y,9(8, )

01,= Rep(r) (S Y10, 0 — Y 1(0100) ]

]

0i,9=Rap(r:) (W) (Y1 (05,00 + Y18, 0]
Let the Shull-Léwdin functions'? be

Dat= Rul (r Y7, 99)

where Y7(8,¢) are the spherical harmonics and
R,(#) are the radial functions defined by
32 T
Rty = =GPy e
X Qar) LE(2nr)exp(—9r)  (13)
The parameter %, usually referred to as the
orbital exponent, is a variable seale factor, and
the L2%,(2nr) are the (21+2)-order associated
Laguerre polynomials defined according to the
conventions of Pauling and Wilson, '8
Thus R.{r) can be written as

(12)

n—f—
=

Ru()=AuS Bttt (14)

with
Ay=[2n3¥(n—I-1)! (a+I+11)]V2

and

w=[ (=)@t}
((—1-1-B) 12l +2+E) 1A!]

These functions form a complete basis set which
is discxete in its entirety. These properties
greatly simplify the the numerical work, giving
fast convergence. First, the

ion for

expand
unperturbed dorbital of free nickel

we

comparison with the expansion of &F{ and F¢.
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The expansion formula is given by

Pi=Raa (Y308, ¢)= }; Djba (15)

where ¢.; are the SALC’s of Shull-Lowdin
functions which belong to the irreducible repre-
sentation denoted by the appropriate superscript,
#,7, &9, L. The coefficients D,} are given by

Di=(gulop={, Ru* ) Rutr)rdr
x [Yir6.9)Yi0,9)d0
= A B Bh (r27m) (3. 4096072150
k=0 0
+45. 261¢™4 5297 + 129, 48¢8. 500
+24. 0718'_15‘01")?'20'!" (16)

Note that
Dlg= s%zD»c2=Dn'2=D:2"—'—"-D32

We choose the value of % as 3. 80, which shows
the most fast convergence. The reason for this

choice is that the value of 7, giving fast

convergence in the expansion of ¢; is very

likely to give fast convergence in the expansion
of ¥4, which is not greatly different from ¢;.
The values of the coefficients D,, are tabulated
in Tablel.

The expansion formula of ¥ is given by

PR |
i = E Cn!‘f{,nl
ad
where

ba=Ruy(r)Yi(8, ¢) =Ry (r) Z":Gi'-YT @, ¢)

(18)

Values of G, are tabulated in Tables 2~6, The

expansion coefficients C,j in Eq. {17) are given

by

Ci=<g\ T3 (19)

Using the group theory!®, it can be shown that

G=Ci=C} and C=C); (20)

Here, C. and C) are calculated more easily
than the others.

Vol. 22, No. 2, 1978

Table 1. Expansion of d orbital of free Ni2* iom.
QA=$D"2‘;)’J’_

% D-E
3 0.9771
4 0. 0008
S 0. 2073
6 0.0100
7 0. 0501
2 0.0126
a 0.0128
10 0. 0052
11 0. 0035
12 0.0018
13 0. 9011
14 0. 0006
15 6. 0004
18 0. 0002
17 0. 0002
18 0. 0001
Z1Dul? J 1.0005

$’s are given by
Ci={t | T
S ARCA IR RERI PP 21)
{ntlpe)=Duzbra (21-a)
B8l xe> =[Pl pn>+ (il 9,
<t | 95,90+ {$ | 96.27]
From the geometry, it is obvious that
<¢a$ I 9"’2.3‘) = <¢’n§ I ‘;03.y> = <9€’n§ [@54) = <¢j I ?’s.x>
(21-b)
Thus, we are left with
(il xesr=2{ 8 03.p»
=2([Ru() Y} 0, 6)J*Ropr)
X 7%‘ (Vi1 (B3.99) +Y 1(Ba.03) } Jdw
=2{[Ru(r) BGAYT(6,9)]*
[Rap(r9) = (Y1 (s00) +Y 165,01 Ddo
=2| V26 [(Ru) Y10, )
{Rep(rs) Y M{8s,09) } dv
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Table 2. Symmetry adapted linear combinations of spherical harmonics,

Yi=RGiY = :/%[*’—?-Gf. (Yi+Ym™ +1’—£§G&( Yi+ YD +--—---+‘/—?GE (YY) ]
1 42454 ;e F25e Y25 ¥Zq: 425
7 ! i 13 f P s- 7 fl (34 i 1}
4 Y 0. 35355339 | —0.93541435
6 Y§ 0. 90138782 0. 32880676 0. 28165036
Y¢ 0 ~0. 65044364 0. 75955453
2 Y§ 0. 47598582 | ~0.55781092 | —0.5192937G | —0.43888328
Y§ 0 —0. 23671604 0.76282144 | —0.60172167
Y 0. 86376719 0. 27958166 0. 26792725 0. 24701672 0. 20721504
10 Yy 0 —{. 13317195 0. 43130204 | —90. 73793823 0. 50168208
Y& 0 —0.76376510 0 0. 45703723 0.47218128
Y, 0.52384546 | —0.42500507 | —0.41303069 | —0. 39287055 | —0.360G718¢ | —0. 30060490
12 Yy 0 —0. 57304625 0. 67662665 6. 14938000 0. 01611959 | —0.61676709
Y 0 0. 08576491 ¢ —0. 63389655 0. 74573696 | —0. 18592778
Table 3. Symmetry adapted linear combinations of spherical harmonics,
Yi=5GiYi=— 717[~ VEGUY = Y5 = JTG(Y] =Y 1) —ermree— TG (VI - Y]
1 - J2G} - JZGh - JZGi - J2G} — J2ZGh - ZC
4 Y? 0.35355339 | 0.93541435
6 s 0. 90138782 | —0, 32889676 0. 28165036
b &4 0 0. 65044364 0. 75055453
8 , H 0. 47598582 0. 55781092 | —0. 51929370 0. 43888323
Y 0 0.23671604 | 0.76282144 0. 60172167
Y 0.86376719 | —0. 27958166 0. 26792725 | —0.24701672 0. 20721504
10 Y3, 0 0. 13317195 0. 43130904 0. 73793823 0. 50168203
e i} 0. 75376510 0 —0. 45703723 0.47218126
Y 0. 52384546 0. 42500507 | —0. 41303069 0. 39287055 | —0. 36007180 0. 30060490
12 Yi: [ 0. 37304625 0. 67662665 | —0. 14938000 0. 01611959 0. 61679709
Yi© 0 ~0. 08576491 ¢ 0. 63398655 0. 74573696 (. 18592778
a=i-1 s ¢ m*
=2| vZGhl A2 BA(15. 671 JU+h+1, XL e YE (Baga) Jdv 22)
L1, 2 1;n 3. 7374, R) and the internuclear distance R between Ni2+
1+1.574230+k+1,1,1,2,1;7,1. 3584, R)]  and F~ jons is 3.7927 a.u.
(21-¢) Cx's are given by
where Co=ulTo

S, 7, 1,7 R = [ Y10, 0)1*

=N, E‘(‘jb:l [ @n) - 2:<¢:£ J x:x:> - ja(‘}'?:l | x:»::)]

(23)

Journal of the Korean Chemical Society



43 2ANEgEe 42 A4 4% QR EF 29 dtedo)y 10Dg ) =P 73
Table4. Symmetry adapted linear combinatioms of spherical harmonics,
Y§=NGiYi= :,_;xs,,ffc,a(Yf-Y-;) +IJTGHY =Y 5) +i JECH(YP= Y ) ove]
I iVEGE iVEGE | i SEGCH,
4 Yo -1 |
6 6 0. 21926450 0. 97566545
Ve’ 0. 97566545 —0. 21926450
3 Yo ~0. 27464711 — 0. 96154569
Y —0. 96154509 0. 27464711
Y1ob 0. 10966095 0. 35946213 0. 92669383
10 Yot 0. 96450533 —0. 26379921 ~0. 01180837
Yol 0. 24021644 0. 89509606 —0. 37563161
Yot — 0. 13880607 —0. 44154838 —0. 88643551
12 Y — 0. 80008533 —{. 67455251 0. 42997268
Yyt —0. 78780103 0. 59161977 —0. 17133472
Table5. Symmetry adapted linear combinations of spherical harmonies.
Yi=5GLYi=G} Y.?=71=§[J'2'G;(Yt+ Y )+ V2GR Y+ Y7 + VTG (Y24 Y1) 4]
1 5 /TG JT6: | JvzGs | yzem
4 v 0.64540722 | —0.78576262 | ]
6 Ye* 0.93541435 0.35355329 | |
g Y 0.69597055 | —0.32400753 | ~—0.60031914
Va* 0 0.83601718 | —0. 54870326
10 Y1o* 0.91144345 0. 26465658 0. 31500433
Y1o* 0 0.76564149 | —0.64326752
12 Yio* 0.71852352 | —0.30406127 | —0.33728553 | —0.32679140
Yo 0 0. 70456649 0.33875374 | —0.62356392
" 0. 89795050 0. 22431543 0. 24070901 0. 29227764
14 Y 0 0.86035454 | —0.32402604 | ~0.39344274
Y 0 ) 0.77191640 | —0.63572406
Yi6* 0.73194689 | —0.25680265 | —0.27041397 | —~0.30403124 | —0.48187069
16 Yig" 0 0. 67239780 0. 09018452 0. 36306158 —0. 63869729
Yie" 0 0 0.85174236 | —0.49801831 | —0.16282728
) 0ud Dyabipe {23-2) It is obvious that
1
: .us>‘:"-'ﬁ 2 J"1::” 23, +2< ‘[ .£>
il e = L2 a0+ 2 s (Pl =Pl 0 (23-b)

- <¢:I' I 551,:>_ <‘:-'{’:1‘ I 2 J>— <‘1"r):.! I 5‘34.3>

- <¢':! | @5.:)]
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Table 6. Symmeiry adapted linear combinatioas of spherical harmonics.

D - Fiam

Yr=ZGuYr= -}f[ VEGAIYi+Y N+ VECHY I+ Y. D+ VI LY+ Y, 19 +) +-0]

1 J 76:": ‘V’ YG% \/ Z2Gh ‘V’ EIG;’N
4 Yy -1
6 Ye Q. 55901699 0. 82915620
8 Yo —(. 65068202 —0. 75935032
Y —0. 75935032 0. 65068202
10 Y 0. 44497917 0. 48620518 0. 75206254
Yu© 0. 39845247 —{. 85957253 (. 31995420
o Yis —0. 51600908 —0.54714937 ~0. 65906160
Yie” —0. 83033957 0. 13051364 0. 54175861
Yif 0. 38276947 0. 39917223 0. 44709882 0. 70303037
14 Y 0. 38861700 —0. 19799798 — 0. 80094175 0. 41020232
Y 0. 31287505 —0. 86005276 0. 39772861 0. 06504153
Yie' —0. 43975013 —0.45389219 —0. 49098594 --0. 59961196
16 Vi —0. 77436940 —0. 22198134 0. 48752039 0. 33674944
Yy —{0. 36008422 0. 47572496 —0. 66531451 0. 44875575

{pmler,er="_{dm 2.0 =<u 0a.s> =i @5,
(23-¢)

From the physical reasoning it is noted that
I+ dul @1 ={¢n +énl oo
essree =+ Ol 06.Y (23-d)
From above three relations (23-b), (23-¢),
(23-d), and an additional relation

{rlorer=Lgnl @20 ={ful pa.e ={dmlgs.d
(23-¢)

it follows that
<¢:{1 §93.;>=2<¢:I’ I Ql.x) (23_f)
The validity of relations (21-b) and (23-f) can
be shown explicitly by using the transformation
properties of angular momentum eigenvector

under finite rotations. 2°
Thus, we are left with

<$-,’:I1 xus>= V?(‘}F):f [@3.:)
=3 |[Rulr)Yi (8, 0)]*
X [Ra,(r5) Yo' (62, ¢3) 1dv

= &/ BCM[ Ry (r)Y (8, ) ]*
X [Re(ra) Y § (B4, 003) 1dv
i
= V3G AuS B~ 11156 (+E+1,
1,01, 0:% 8.70, R) 10, 805 (0 +4+1, £,
0,2,0;57,2.425, R)] (23-g)

Similarly

n—f{—1
il o> = ¥ 3 G2 B [15. 6715+ k41,
5,0,2,1;7%,3. 7374, R)+1.5742 & (I+4+1,
4,0,2,1;%,1.3584, R)] (23-h)

Computations of two-center overlap integrals in
Eq. (21-c}, (23-g), and (23-h) are performed
on IBM-360, the electronic digital computer of
Seoul National University, We have used a
new program based on the formula derived by
Silver and Ruedenberg,?® The values of coef-
ficients CJ and C) from Eq. (21) and (23)
are in Tables 7 and 3.

4. RESULTS AND DISCUSSION

From Tabie 7, one may note that nearly

Journal of the Korean Chemical Society
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Teble 7. Expensien of ¥4, W‘,=Z‘C’,,¢’,, %}]C‘,;]?:O.EEE?
S 1
‘ 2 4 6 8 10 12
3 0. 9575
4 0.0210
5 0. 1663 —0. 0051
6 0. 0696 0.0141
7 ~0. 0276 —0.0280 ~0.237
8 0. 0941 0. 352 0. 0577
9 --0. 0560 ~0.0348 —0.0837 —0.0212
10 * 0. 0492 0. 0236 0. 0752 0. 0380
11 —0.0191 —0. 0097 —0.0345 —0.0333 —0.052
12 0. 0151 0. 0031 —0. 0007 0. 0086 0.0573
13 —0.0104 —0. 0039 0. 0025 0. 0081 —0.0120 —0.0339
14 0. 0082 0. 0042 0. 0099 —0.0022 —0.0205 0.0142
zicue 0. 9657 0. 0640 0.0179 0. 031 | 0. 0066 0. 0014
Table 8. Expansion of &2 ¥ ,"-—-.‘Z‘}'C,.',t,.’;.‘I ?:IC:’F:(}' 9745
1
\ 2 4 8 10 12 7] 16
n
3 0. 9202
4 0. 0639
5 0.0918 | —0.0189
6 0. 1497 0. 0448
7 1 —0.0740 | —0.0610 | —0.0342
8 0. 0521 050397 0. 0560
9 0, 0810 0.0217 | —0.0258 | —0.0242
10 | —0.1163 | —0.0754 | —0.0526 0. 0120
1 0. 0847 0.0671 0. 0962 0.0347 | —0.0155
12 | —0.0131 | —0.0139 | —0.0468 | —0.0537 | —0.0283
13 0.-0067 | —0.0100 | —0.0226 0. 0104 0. 0537 0. 0047
4 | —0.0319 | —0.0127 0.0135 0.0263 | —0.0041 | —0.0321
15 0.0235 0.0213 0.0200 | —0.0015 |. —0.0328 0. 0077 0. 0168
16 0. 0084 0.0030 | —0.0125 | —0.0217 | —0.0041 0.0235 | —0.0213
v | —0.0082 | —0.0001 | —0.0199 | —0.0033 —0. 0209 0. 0159
g | —0.0138 | —0.0084 | —0.0001 ' 0.0013
Ticyiz!  0.9192 0.0193 0.0213 0. 0061 0.0051 0. 0017 0.6012 0. 0003

complete convergence is obtained in the expan-
sion of #§ orbital. However, from Table8, it
is noted that the convergence in the expansion

0.9745. One

probable reason for this is that excited con-

of e} orbital appears to halt at

Vol 22, Nou. 2, 1978

figurations with higher energy must be mixed
judging from the large mixing of ligand atomic
orbital in ef orbital than in ¢} orbital. But
the more important reason is the singularity of
2s atomic orbital of F~ contained in ¢* orbital.
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Fig. 2. Convergence in the expansion of ¥:.
This figure shows that the slow convergence is
duc to the singularity of the 25 wave function
at the F-nucleus

Linear combinations of wave functions based on
cannot
treat these singularities at F~ Fig.2
shows this point clearly. Extensive adjustment

only one point, the nucleus of Ni?*,
nuclei. 2

of the scale factor to a better optimum value

for the basis function of each I-value might
give better convergence, but it involves some
difficulties in practice.

However, comparison of results in Table7
and Table8 with that of Tablel shows the
following facts clearly.

We can consider the e} and ¢§; orbital as
the perturbed d orbitals of free metal ion. And
the result of the perturbation is that excited
configurations with higher orbital angular mo-
mentum than d orbital are considerably mixed
into the perturbed d orbital of metal ion
The extent of this
distortion is greater in e§ orbital
Accordingly the

(angular distortion).
angular
than in :Forbital, radial
distortions in these orbitals are different from
each other.

To summarize, the e¥ and #j orbital ob-
tained in the MO scheme are such wave
functions as explained in Eq.(9). So we
should say that the “10Dg” of MO scheme is
not the 10Dq defined in the extended crystal

field theory. 1

5. CONCLUSIOM

The energy difference between ef and ¢
orbitals evaluated in the MO method have little
mearning of 10Dq defined in the crystal field
theory. That is, this value cannot be para-
meterized to give the energy gaps between
other erergy levels. In other senses, if the
LCAO-MO’s of complex ion obtained. in the
MO scheme are accurate, it is impossible to
express the energy eigenvalue spectrum of
complexes in terms of limited number of para-
meters such as 10Dgq, F,, Fy, etc.
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