DOI QR코드

DOI QR Code

Silicon Electro-optic Orbital Angular Momentum Sign Modulator for Photonic Integrated Circuit

광 집적회로용 실리콘 기반 궤도 각운동량 부호 변환기

  • Received : 2020.06.25
  • Accepted : 2020.08.15
  • Published : 2020.08.31

Abstract

In this paper, we propose a silicon-based electro-optic (EO) modulator which can modulate a sign of a topological charge number l of |l|=1 orbital angular momentum (OAM) mode. The proposed EO modulator consists of position-dependent doped Si waveguide core and undoped SiO2, cladding, which enables control of the effective index and propagation loss of two OAM constitutive eigenmodes. The modulator functions as OAM mode maintaining waveguide at -0.33V and as topological charge sign inverter at 10V. The output OAM mode purity is calculated through electric field distribution, showing high purity of |l|>0.92 in both cases.

본 논문에서는 실리콘 기반의 광 집적회로에서 외부 전압 조절을 통해 |l|=1 궤도 각운동량 모드의 궤도 각양자수를 변조할 수 있는 전기 광학 변조기를 설계하였다. 설계된 전기 광학 변조기는 위치별로 서로 다른 도핑농도를 가지는 실리콘 코어와 실리콘 산화막으로 구성되어 있으며, 도핑농도의 분포를 통해 궤도 각운동량 모드를 구성하는 두 고유 모드의 전파 손실과 유효굴절률 변화량을 조절할 수 있도록 설계되었다. 변조기는 역전압을 기준으로 -0.33V에서는 궤도 각운동량 모드의 부호가 유지되는 광도파로로, 10V에서는 궤도 각양자수 부호 변환기로서 동작한다. 고유 모드 확장법으로 계산한 신호변조 후의 전기장 분포를 통해 얻은 궤도 각양자수는 두 동작모드에서 모두 |l|>0.92 으로 매우 높은 궤도 각운동량 모드 순도를 보였다.

Keywords

References

  1. M. Mirhosseini, O. S. Magana-Loaiza, M. N. O'Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, "High-dimensional quantum cryptography with twisted light," New J. of Physics, vol. 17, no. 3, 2015, p. 033033. https://doi.org/10.1088/1367-2630/17/3/033033
  2. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, "Optical communications using orbital angular momentum beams," Advances in Optics and Photonics, vol. 7, no. 1, 2015, pp. 66-106. https://doi.org/10.1364/AOP.7.000066
  3. D. Y. Park, "A Study on the Information Reversibility of Quantum Logic Circuits," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 1, 2017, pp. 189-194. https://doi.org/10.13067/JKIECS.2017.12.1.189
  4. M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, "Astigmatic laser mode converters and transfer of orbital angular momentum," Opt. Commun., vol. 96, no. 1-3, 1993, pp. 123-132. https://doi.org/10.1016/0030-4018(93)90535-D
  5. I. Kimel and L. R. Elias, "Relations between hermite and laguerre gaussian modes," IEEE J. Quant. Electron., vol. 29, no. 9, 1993, pp. 2562-2567. https://doi.org/10.1109/3.247715
  6. D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, "Generating in-plane optical orbital angular momentum beams with silicon waveguides," IEEE Photonics J., vol. 5, no. 2, 2013, pp. 2201206-2201206. https://doi.org/10.1109/JPHOT.2013.2256888
  7. W. Liu, X. Hu, L. Jin, X. Fu, and Q. Chen, "Generation of in-plane light beam with orbital angular momentum with an asymmetrical plasmonic waveguide," Plasmonics, vol. 11, no. 5, 2016, pp. 1323-1329. https://doi.org/10.1007/s11468-015-0178-x
  8. G. Rui, B. Gu, Y. Cui, and Q. Zhan, "Detection of orbital angular momentum using a photonic integrated circuit," Scientific reports, vol. 6, no. 1, 2016, p. 28262. https://doi.org/10.1038/srep28262
  9. I. J. Lee and S. Kim, "On-Chip Guiding of Higher-Order Orbital Angular Momentum Modes," Photonics, vol. 6, no. 2 Multidisciplinary Digital Publishing Institute 2019, p. 72. https://doi.org/10.3390/photonics6020072
  10. S. Zheng and J. Wang, "On-chip orbital angular momentum modes generator and (de) multiplexer based on trench silicon waveguides," Optics express, vol. 25, no. 15, 2017, pp. 18492-18501. https://doi.org/10.1364/OE.25.018492
  11. S. F. Mousavi, R. Nouroozi, G. Vallone, and P. Villoresi, "Integrated optical modulator manipulating the polarization and rotation handedness of Orbital Angular Momentum states," Scientific reports, vol. 7, no. 1, 2017, p. 3835. https://doi.org/10.1038/s41598-017-04118-5
  12. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, "Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1-14-${\mu}m$ Infrared Wavelength Range," IEEE Photonics J., vol. 3, no. 6, 2011, pp. 1171-1180. https://doi.org/10.1109/JPHOT.2011.2171930
  13. I. Lee and S. Kim, "A Three-layered Optical Waveguide of Second-order Orbital Angular Momentum Mode Guiding for Photonic Integrated Circuit," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 4, 2019, pp. 645-650. https://doi.org/10.13067/JKIECS.2019.14.4.645
  14. K. Ogawa, K. Goi, A. Oka, Y. Mashiko, T. Liow, X. Tu, G. Lo, D. Kwong, S. T. Lim, and M. J. Sun, "Design and characterisation of high-speed monolithic silicon modulators for digital coherent communication," in Silicon Photonics X, vol. 9367, 2015, p. 93670C.
  15. A. Abraham, T. Anfray, O. Dubray, D. Fowler, S. Olivier, D. Marris-Morini, and B. Charbonnier, "Optimization of Silicon MZM Fabrication Parameters for High Speed Short Reach Interconnects at 1310 nm," Applied Sciences, vol. 6, no. 12, 2016, p. 395. https://doi.org/10.3390/app6120395