• Title/Summary/Keyword: 궤도선형

Search Result 157, Processing Time 0.027 seconds

Derivations of Surface Solar Radiation from Polar Orbiting Satellite Observations (극궤도 위성 관측을 이용한 지표면에서의 태양 복사에너지 도출)

  • Kim, Dong-Cheol;Jeong, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.201-220
    • /
    • 2016
  • In this study, the net solar radiation fluxes at the surface are retrieved by updating an existing algorithm to be applicable for MODerate resolution Imaging Spectroradiometer (MODIS) observations, in which linear relationships between the solar radiation reflected from the top of atmosphere and the net surface solar radiation are employed. The results of this study have been evaluated through intercomparison with existing Clouds and the Earth's Radiant Energy System (CERES) data products and ground-based data from pyranometers at Gangneung-Wonju National University (GWNU) and the Southern Great Plains (SGP) of observatory of Atmospheric Radiation Measurement (ARM) site. Prior to the comparison of the surface radiation energy in relation to the energy balance of the earth, the radiation energy of the upper part of the atmosphere was compared. As a result, the coefficient of determination was over 0.9, showing considerable similarity, but the Root-Mean-Square-Deviation (RMSD) value was somewhat different, and the downward and net solar-radiation energy also showed similar results. The surface solar radiation data measured from pyranometers at Gangneung-Wonju National University (GWNU) and Atmospheric Radiation Measurement (ARM) observatory are used to validate the solar radiation data produced in this study. When compared to the GWNU, The results of this study show smaller RMSD values than CERES data, showing slightly better agreements with the surface data. On the other hand, when compared with the data from ARM SGP observatory, the results of this study bear slightly larger RMSD values than those for CERES. The downward and net solar radiation estimated by the algorithm of this study at a high spatial resolution are expected to be very useful in the near future after refinements on the identified problems, especially for those area without ground measurements of solar radiation.

PREDICTION OF THE SUN-GLINT LOCATIONS FOR THE COMMUNICATION, OCEAN AND METEOROLOGICAL SATELLITE (통신해양기상위성에서의 태양광 반사점(SUN-GLINT) 위치예측)

  • Park, Jae-Ik;Choil, Kyu-Hong;Payk, Sang-Young;Ryu, Joo-Hyung;Ahn, Yu-Hwan;Park, Jae-Woo;Kim, Byoung-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.263-272
    • /
    • 2005
  • For the Communication, Ocean and Meteorological Satellite (COMS) which will be launched in 2008, an algorithm for finding the precise location of the sun-glint point on the ocean surface is studied. The precise locations of the sun-glint are estimated by considering azimuth and elevation angles of Sun-satellite-Earth geometric position and the law of reflection. The obtained nonlinear equations are solved by using the Newton-Raphson method. As a result, when COMS is located at $116.2^{\circ}E$ or $128.2^{\circ}E$ longitude, the sun-glint covers region of ${\pm}10^{\circ}(N-S)$ latitude and $80-150^{\circ}(E-W)$ longitude. The diurnal path of the sun-glint in the southern hemisphere is curved towards the North Pole, and the path in the northern hemisphere is forwards the south pole. The algorithm presented in this paper can be applied to predict the precise location of sun-glint region in any other geostationary satellites.

Objectification and validation of typhoon center intensity analysis based on MTSAT-1R satellite's infrared images (MTSAT-1R 위성 적외영상기반 태풍강도분석 객관화와 검증)

  • Park, Jeong-Hyun;Park, Jong-Seo;Kim, Baek-Min;Lee, Hee-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.219-223
    • /
    • 2007
  • GMS(Geostational Meteorological Satellite), GOES(Geostationary Operational Environmental Satellite), MTSAT(Multi-Funcional Transport Satellite) 등의 정지기상위성은 거의 매시간 기상상황을 감시하고 태풍정보를 실시간 분석할 수 있어 드보락(Dvorak, 1975)등에 의해 이를 이용한 가시영상이나 적외영상기반의 태풍중심강도를 분석기법(드보락의 VIS/IR 분석법) 및 적외강조영상 분석기법(드보락의 EIR 분석법)이 개발되었다(Dvorak,1975, 1984). 그러나 주관적인 드보락의 VIS/IR 분석 법 및 EIR 분석법에 의한 결과는 분석자마다 다를 수 있고,절차 또한 복잡하여 시급성을 요하는 태풍 분석에서 취약점으로 지적되어 왔다. 이러한 주관적 방법의 한계를 극복하기 위하여 디지럴화된 영상과 자동 객관화된 알고리즘을 적용하는 객관 드보락 기법 (Advanced Objective Dvorak Technique, 이하 AODT)이 개발되었고(Velden et al, 1998), Zehr(1989)에 의해 비행기 관측자료등을 통해 보정되고 있다. 기상청에서는 2001 년부터 GMS 위성 관측영상을 이용하여 태풍의 중심위치를 분석하고,태풍강도를 정량화하기 위해 주관 드보락 기법 (Subjective Dvorak Technique 이하 SDT)을 이용하여 태풍중심위치와 강도정보를 실시간 예보관 및 일반인에게 제공하고 있다. 그러나 주관적인 드보락 기법이 분석자에 따라 다른 결과가 도출 될 수 있어, 이를 보완하기 위해 QuikSCAT 해상풍 관측자료, 정지 및 극 궤도위성자료를 활용한 해수면온도 둥 위성 분석자료와 기타 관측자료를 참조하고 있다. 정지기상위성자료를 이용한 드보락기법은 적외영상만으로 태풍중심 위치와 강도를 분석할 수 있는 장점 외에 앞에서 열거한 몇 가지 극복되지 못한 한계도 있으나,SSM/I 둥 기타 위성자료의 관측시간대와 분석정보 부족 등으로 정지기상위성자료를 이용한 드보락 기법을 대체할만한 현업용 분석기법이 개발되지 못했다. 기상청에서는 기존의 태풍분석업무를 개선하기 위해서 2005년부터 AODT를 도입하여 그 성능을 시험분석하고, 2006년 6월부터 AODT를 현업화하여 실시간 태풍강도분석 에 활용하였으며 2006년 제 3호 태풍 에위니아(EWINIAR)부터 두리안(DURlAN)까지 19개 태풍 434개 시간대자료를 분석한 결과 SDT 강도분석결과와 0.90의 상관도를 보였다. 또한 AODT 알고리즘이 기본적으로 대서양에서 발생하는 태풍에 초점을 두고 개발되어 북서태평양에서 발생하는 태풍에 직접 적용하기에는 어려움이 있는 것으로 알려져 있으므로(Velden et al. 1998), 이의 개선을 위하여 태풍강도지수인 SDT CI(Current Intensity) 수와 AODT CI 수간의 통계적 관계를 밝히고 신경망을 이용한 비선형 주성분 분석 (Hieh,2004)등을 통해 AODT CI 수 보정 시도를 하였다. 이와 더불어, 기상청은 근원적 객관 알고리즘 개선을 위해 AODT 자체 알고리즘 분석과 위성자료 DB 구축 동의 노력을 기울이고 있다.

  • PDF

Spherical Slepian Harmonic Expression of the Crustal Magnetic Vector and Its Gradient Components (구면 스레피안 함수로 표현된 지각 자기이상값과 구배 성분)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.269-280
    • /
    • 2016
  • I presented three vector crustal magnetic anomaly components and six gradients by using spherical Slepian functions over the cap area of $20^{\circ}$ of radius centered on the South Pole. The Swarm mission, launched by European Space Agency(ESA) in November of 2013, was planned to put three satellites into the low-Earth orbits, two in parallel in East-West direction and one in cross-over of the higher altitude. This orbit configuration will make the gradient measurements possible in North-South direction, vertical direction, as well as E-W direction. The gravity satellites, such as GRACE and GOCE, have already implemented their gradient measurements for recovering the accurate gravity of the Earth and its temporal variation due to mass changes on the subsurface. However, the magnetic gradients have little been applied since Swarm launched. A localized magnetic modeling method is useful in taking an account for a region where data availability was limited or of interest was special. In particular, computation to get the localized solutions is much more efficient and it has an advantage of presenting high frequency anomaly features with numbers of solutions fewer than the global ones. Besides, these localized basis functions that were done by a linear transformation of the spherical harmonic functions, are orthogonal so that they can be used for power spectrum analysis by transforming the global spherical harmonic coefficients. I anticipate in scientific and technical progress in the localized modeling with the gradient measurements from Swarm and here will do discussion on the results of the localized solution to represent the three vector and six gradient anomalies over the Antarctic area from the synthetic data derived from a global solution of the spherical harmonics for the crustal magnetic anomalies of Swarm measurements.

Correction for SPECT image distortion by non-circular detection orbits (비원형 궤도에서의 검출에 의한 SPECT 영상 왜곡 보정)

  • Lee, Nam-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.156-162
    • /
    • 2007
  • The parallel beam SPECT system acquires projection data by using collimators in conjunction with photon detectors. The projection data of the parallel beam SPECT system is, however, blurred by the point response function of the collimator that is used to define the range of directions where photons can be detected. By increasing the number of parallel holes per unit area in collimator, one can reduce such blurring effect. This approach also, however, has the blurring problem if the distance between the object and the collimator becomes large. In this paper we consider correction methods for artifacts caused by non-circular orbit of parallel beam SPECT with many parallel holes per detector cell. To do so, we model the relationship between the object and its projection data as a linear system, and propose an iterative reconstruction method including artifacts correction. We compute the projector and the backprojector, which are required in iterative method, as a sum of convolutions with distance-dependent point response functions instead of matrix form, where those functions are analytically computed from a single function. By doing so, we dramatically reduce the computation time and memory required for the generation of the projector and the backprojector. We conducted several simulation studies to compare the performance of the proposed method with that of conventional Fourier method. The result shows that the proposed method outperforms Fourier methods objectively and subjectively.

  • PDF

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.

Static and Dynamic Analysis for Railway Tunnel according to Filling Materials for overbroken tunnel bottom (철도터널 하부 여굴처리 방법에 대한 정적 및 동적 안정성 검토)

  • Seo, Jae-Won;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.668-682
    • /
    • 2017
  • Alignments of railways recently constructed in Korea have been straightened due to the advent of high-speed rail, which means increasing the numbers of tunnels and bridges. Overbreak during tunnel construction may be unavoidable, and is very influential on overall stability. Over-excavation in tunneling is also one of the most important factors in construction costs. Overbreak problems around crown areas have decreased with improvements of excavation methods, but overbreak problems around bottom areas have not decreased because those areas are not very influential on tunnel stability compared with crown areas. The filling costs of 10 cm thickness of overbreak at the bottom of a tunnel are covered under construction costs by Korea Railway Authority regulations, but filling costs for more than the covered thickness are considered losses of construction cost. The filling material for overbreak bottoms of tunnels should be concrete, but concrete and mixed granular materials with fractured rock are also used for some sites. Tunnels in which granular materials with fractured rock are used may have a discontinuous section under the concrete slab track. The discontinuous section influences the propagation of waves generated from train operation. When the bottom of a tunnel is filled with only concrete material, the bottom of the tunnel can be considered as a continuous section, in which the waves generated from a train may propagate without reflection waves. However, a discontinuous section filled with mixed granular materials may reflect waves, which can cause resonance of vibration. The filled materials and vibration propagation characteristics are studied in this research. Tunnel bottom filling materials that have ratios of granular material to concrete of 5.0 %, 11.5 %, and 18.0 % are investigated. Samples were made and tested to determine their material properties. Static numerical analyses were performed using the FEM program under train operation load; test results were found to satisfy the stability requirements. However, dynamic analysis results show that some mixed ratios may generate resonance vibration from train operation at certain speeds.