DOI QR코드

DOI QR Code

Derivations of Surface Solar Radiation from Polar Orbiting Satellite Observations

극궤도 위성 관측을 이용한 지표면에서의 태양 복사에너지 도출

  • Kim, Dong-Cheol (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Jeong, Myeong-Jae (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
  • 김동철 (강릉원주대학교 대기환경과학과) ;
  • 정명재 (강릉원주대학교 대기환경과학과)
  • Received : 2016.04.14
  • Accepted : 2016.06.17
  • Published : 2016.06.30

Abstract

In this study, the net solar radiation fluxes at the surface are retrieved by updating an existing algorithm to be applicable for MODerate resolution Imaging Spectroradiometer (MODIS) observations, in which linear relationships between the solar radiation reflected from the top of atmosphere and the net surface solar radiation are employed. The results of this study have been evaluated through intercomparison with existing Clouds and the Earth's Radiant Energy System (CERES) data products and ground-based data from pyranometers at Gangneung-Wonju National University (GWNU) and the Southern Great Plains (SGP) of observatory of Atmospheric Radiation Measurement (ARM) site. Prior to the comparison of the surface radiation energy in relation to the energy balance of the earth, the radiation energy of the upper part of the atmosphere was compared. As a result, the coefficient of determination was over 0.9, showing considerable similarity, but the Root-Mean-Square-Deviation (RMSD) value was somewhat different, and the downward and net solar-radiation energy also showed similar results. The surface solar radiation data measured from pyranometers at Gangneung-Wonju National University (GWNU) and Atmospheric Radiation Measurement (ARM) observatory are used to validate the solar radiation data produced in this study. When compared to the GWNU, The results of this study show smaller RMSD values than CERES data, showing slightly better agreements with the surface data. On the other hand, when compared with the data from ARM SGP observatory, the results of this study bear slightly larger RMSD values than those for CERES. The downward and net solar radiation estimated by the algorithm of this study at a high spatial resolution are expected to be very useful in the near future after refinements on the identified problems, especially for those area without ground measurements of solar radiation.

본 연구에서는 대기 상단에서 반사된 복사와 지표면에서 흡수된 복사에너지가 서로 선형 관계임을 보인 기존의 알고리즘을 MODerate resolution Imaging Spectroradiometer (MODIS) 관측 자료에 적용시킬 수 있도록 개선하여 하향 및 순 태양 복사에너지를 산출하였다. 비교 검증을 수행하기 위해 Clouds and the Earth's Radiant Energy System (CERES) 센서와 강릉원주대학교(GWNU), 미국의 Atmospheric Radiation Measurement (ARM) 관측소의 지상 일사계 자료를 사용하였다. 지구 에너지 수지와 관련하여 지표면에서의 복사에너지를 비교하기에 앞서 알고리즘을 통한 산출 결과와 CERES 자료의 대기 상단 복사에너지를 비교한 결과, 결정계수가 0.9이상을 보여 상당히 유사함을 보였지만 Root-Mean-Square-Deviation (RMSD) 값이 다소 차이가 있는 것으로 나타났고 하향과 순 태양 복사에너지도 비슷한 결과를 얻었다. 강릉원주대학교 자료와 비교한 결과, 본 연구의 알고리즘을 통해 산출된 결과가 CERES 자료보다 작은 RMSD를 보임으로서 더 높은 정확도를 보였다. 한편, ARM 관측소의 경우 하향 태양 복사에너지의 평균적인 RMSD가 CERES 자료에 비해 다소 크게 산출되었지만 순 태양 복사에너지의 경우 비슷한 결과가 나타났으며 시 공간 해상도를 고려하였을 때 상당히 유사한 경향을 보이고 있음을 확인하였다. 본 연구에서 파악된 문제점에 대한 개선을 통해 향후 지상 관측을 대신하여 위성 관측으로부터 지표면에서의 하향 및 순 태양 복사에너지 자료를 고해상도로 제공하는데 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Baek, J., K. Byun, D. Kim, and M. Choi, 2013. Assessment of solar insolation from COMS: Sulma and Cheongmi watersheds. Korean Journal of Remote Sensing, 29(1): 137-149 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.1.13
  2. Bisht, G., and R.L. Bras, 2010. Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study. Remote Sensing of Environment, 114(7): 1522-1534. https://doi.org/10.1016/j.rse.2010.02.007
  3. Cha, J.W., Y.H. Kim, H.S. Jeong, and D.S. Sin, 2001. Use of GMS-5 Albedo as Cloud Effect for the Estimation of Surface Solar Radiation. Asia-Pacific Journal of Atmospheric Sciences, 37(5): 513-524.
  4. Cho, H.K., M.J. Jeong, and Y.J. Kim, 2000. Changes in Surface Solar Radiation with Atmospheric Optical Depth. Asia-Pacific Journal of Atmospheric Sciences, 36(3): 365-374.
  5. Conant, W.C., V. Ramanathan, F.P. Valero, and J. Meywerk, 1997. An examination of the clear-sky solar absorption over the central equatorial Pacific: Observations versus models. Journal of climate, 10(8): 1874-1884. https://doi.org/10.1175/1520-0442(1997)010<1874:AEOTCS>2.0.CO;2
  6. Darnell, W.L., W.F. Staylor, S.K. Gupta, N.A. Ritchey, and A.C. Wilber, 1992. Seasonal variation of surface radiation budget derived from International Satellite Cloud Climatology Project C1 data. Journal of Geophysical Research: Atmospheres (1984-2012), 97(D14): 15741-15760. https://doi.org/10.1029/92JD00675
  7. Feng, J., H. Leighton, and M. MacKay, 2003. Radiation budgets in the Mackenzie River Basin: retrieval from satellite observations and an evaluation of the Canadian Regional Climate Model. Journal of Hydrometeorology, 4(4): 731-747. https://doi.org/10.1175/1525-7541(2003)004<0731:RBITMR>2.0.CO;2
  8. Jee, J.B., Y.D. Kim, W.H. Lee, and K.T. Lee, 2010. Temporal and Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea. Journal of the Korean earth science society, 31(7): 720-737 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2010.31.7.720
  9. Jee, J.B., I.S. Zo, K.T. Lee, and W.H. Lee, 2011. The Development of Photovoltaic Resources Map Concerning Topographical Effect on Gangwon Region. Journal of the Korean Solar Energy Society, 31(2): 37-46 (in Korean with English abstract). https://doi.org/10.7836/kses.2011.31.2.037
  10. Jee, J.B., I.S. Zo, and K.T. Lee, 2013. A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites. Korean Journal of Remote Sensing, 29(1): 123-135. https://doi.org/10.7780/kjrs.2013.29.1.12
  11. Jing, X., and R.D. Cess, 1998. Comparison of atmospheric clear-sky shortwave radiation models to collocated satellite and surface measurements in Canada. Journal of Geophysical Research: Atmospheres (1984-2012), 103(D22): 28817-28824. https://doi.org/10.1029/1998JD200012
  12. Justus, C.G., and M.V. Paris, 1985. A model for solar spectral irradiance and radiance at the bottom and top of a cloudless atmosphere. Journal of Climate and Applied Meteorology, 24(3): 193-205. https://doi.org/10.1175/1520-0450(1985)024<0193:AMFSSI>2.0.CO;2
  13. Kim, Y.K., H.W. Lee, J.W. Cha, Y.S. Lee, and Y.S. Moon, 1998. The Study on Estimation for Surface Radiation by Parameter Equation (II): The Estimation for Cloud Day. Asia-Pacific Journal of Atmospheric Sciences, 34(3): 422-431.
  14. Kim, H.Y., and S. Liang, 2010. Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data. Remote Sensing of Environment, 114(11): 2393-2402. https://doi.org/10.1016/j.rse.2010.05.012
  15. Kratz, D.P., S.K. Gupta, A.C. Wilber, and V.E. Sothcott, 2010. Validation of the CERES Edition 2B surface-only flux algorithms. Journal of Applied Meteorology and Climatology, 49(1): 164-180. https://doi.org/10.1175/2009JAMC2246.1
  16. Lee, J., W. Choi, Y. Kim, C. Yun, D. Jo, and Y. Kang, 2013. Estimation of global horizontal insolation over the Korean Peninsula based on COMS MI satellite images. Korean Journal of Remote Sensing, 29(1): 151-160 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.1.14
  17. Li, Z., H.G. Leighton, K. Masuda, and T. Takashima, 1993. Estimation of SW flux absorbed at the surface from TOA reflected flux. Journal of Climate, 6(2): 317-330. https://doi.org/10.1175/1520-0442(1993)006<0317:EOSFAA>2.0.CO;2
  18. Liepert, B.G., and G.J. Kukla, 1997. Decline in global solar radiation with increased horizontal visibility in Germany between 1964 and 1990. Journal of Climate, 10(9): 2391-2401. https://doi.org/10.1175/1520-0442(1997)010<2391:DIGSRW>2.0.CO;2
  19. Li, Z., M.C. Cribb, F.L. Chang, A. Trishchenko, and Y. Luo, 2005. Natural variability and sampling errors in solar radiation measurements for model validation over the Atmospheric Radiation Measurement Southern Great Plains region. Journal of Geophysical Research: Atmospheres (1984-2012), 110(D15).
  20. Masuda, K., H.G. Leighton, and Z. Li, 1995. A new parameterization for the determination of solar flux absorbed at the surface from satellite measurements. Journal of Climate, 8(6): 1615-1629. https://doi.org/10.1175/1520-0442(1995)008<1615:ANPFTD>2.0.CO;2
  21. Pinker, R.T., and I. Laszlo, 1992. Modeling surface solar irradiance for satellite applications on a global scale. Journal of Applied Meteorology, 31(2): 194-211. https://doi.org/10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2
  22. Tang, B., Z.L. Li, and R. Zhang, 2006. A direct method for estimating net surface shortwave radiation from MODIS data. Remote sensing of Environment, 103(1): 115-126. https://doi.org/10.1016/j.rse.2006.04.008
  23. Trishchenko, A., and Z. Li, 1998. Use of ScaRaB measurements for validating a GOES-based TOA radiation product. Journal of Applied Meteorology, 37(6): 591-605. https://doi.org/10.1175/1520-0450(1998)037<0591:UOSMFV>2.0.CO;2
  24. Wang, H., and R. T. Pinker, 2009. Shortwave radiative fluxes from MODIS: Model development and implementation. Journal of Geophysical Research: Atmospheres (1984-2012), 114(D20).
  25. Wielicki, B.A., B.R. Barkstrom, E.F. Harrison, III, R.B. Lee, G. Louis Smith, and J.E. Cooper, 1996. Clouds and the Earth's Radiant Energy System (CERES): An earth observing system experiment. Bulletin of the American Meteorological Society, 77(5): 853-868. https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
  26. Yan, H., J. Huang, P. Minnis, T. Wang, and J. Bi, 2011. Comparison of CERES surface radiation fluxes with surface observations over Loess Plateau. Remote Sensing of Environment, 115(6): 1489-1500. https://doi.org/10.1016/j.rse.2011.02.008