• Title/Summary/Keyword: 굽힘 변형도

Search Result 281, Processing Time 0.027 seconds

Thermo-mechanical and Flexural Analysis of WB-PBGA Package Using Moire Interferometry (무아레 간섭계를 이용한 WB-PBGA 패키지의 온도변화 및 굽힘하중에 대한 거동해석)

  • Han, Bong-Tae;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1302-1308
    • /
    • 2002
  • Thermo-mechanical and flexural behavior of a wire-bond plastic ball grid array (WB-PBGA) package are characterized by high sensitive moire interferometry. Moire fringe patterns are recorded and analyzed for several bending loads and temperatures. At the temperature higher than $100^{\circ}C$, the inelastic deformation in solder balls become more dominant, so that the bending of the molding compound decreases while temperature increases. The deformation caused by thermally induced bending is compared with that caused by mechanical bending. The strain results show that the solder ball located at the edge of the chip has largest shear strain by the thermal load while the maximum average shear strain by the bending moment occurs in the end solder.

Strain characteristics of Ag sheathed Bi-2223 superconducting tapes according to bending mode (굽힘모드에 따른 Ag 시스 Bi-2223 초전도장척 테이프의 굽힘 변형률 특성)

  • Shin, H.S.;Choi, S.Y.;Ko, D.K.;Ha, H.S.;Ha, D.W.;Oh, S.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.50-54
    • /
    • 2002
  • Influences of bending strain on the critical current ($I_c$) in Ag-sheathed Bi-2223 superconducting tapes at 77K were investigated. The effect of bending mode on the bending strain characteristics was discussed in viewpoints of sample geometry, n-value and damage morphology. Especially, in this paper, we reported the $I_c$ behavior in Ag alloy sheathed Bi-2223 multifilamentary superconducting tapes under hard bending. As a result, $I_c$ degradation behavior of the hard bending appeared remarkably than the case of easy bending, but it did not influence greatly on the n-value.

  • PDF

A Characteristics of Bending Deformation in HallowRectangular Tube by Press Die (중공 각재의 프레스 굽힘 변형 특성)

  • Lee, H.Y.;Kim, K.S.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.285-288
    • /
    • 2007
  • In the recent years the using of low-density material such as high-strength Al alloy on the various industries is becoming light-weight. High strength and hollow Al alloy is good material for stiffness and recycling. Therefore the advanced manufacturing technology with Al alloy is continuously required in many industrial fields. In this study simplified hallow rectangular section of Al alloy is analyzed by FE analysis. Bending stress is affected punching and rotating of wing-die. The analysis of press bending is preformed at first. The elastic recovery value of component and stress distribution acting from the result of the bending angle of three types were obtained. The designed precesses were analyzed by the commercial FE code, Deform-3D. Forming dies for each process were designed and prototypes were manufactured by the verified forming process. Some of the important features of design parameters in the press bending were reviewed.

  • PDF

Nonlinear Modelling for the Vibration Analysis of a Rotating Ring with the In-Plane/Out-of-Plane Deformations (면내/면외 변형이 있는 회전 링의 진동해석을 위한 비선형 모델링)

  • Kim, Won-Suk;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.42-47
    • /
    • 2003
  • Nonlinear models for a thin ring rotating at a constant speed are developed. The geometric nonlinearity of displacements is considered by adopting the Lagrange strain theory for the circumferential strain. By using Hamilton’s principle, the coupled nonlinear partial differential equations are derived, which describe the out-of-plane and in-plane bending, extensional and torsional motions. The natural frequencies are calculated from the linearized equations at various rotational speeds. Finally, the computation results from the nonlinear models are compared with those from a linear model. Based on the comparison, this study recommends which model is appropriate to describe the behavior of the rotating ring.

The Effects of Sheet Strength and Thickness on Bending Behavior of Steel Pipes (소재강도와 두께가 파이프 굽힘변형의 꺽임발생 거동에 미치는 영향)

  • 박기철;이형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2071-2081
    • /
    • 1995
  • In order to examine the effects of yield stress, tensile strength and thickness on the buckling behavior during bending of pipes, the nonlinear finite element analysis of the 3-point bending tests was carried out using the commercial software (ABAQUS) under the condition of L4(2$^{3}$) performed according to the designed condition. Form the analysis of simulation results, it was found that yield stress and thickness were the major factors on buckling load at pipe bending and tensile strength gave little influence because the plastic strain and plastic zone are small. For the punch displacement to the occurrence of buckling, thickness is a major factor and yield stress and tensile strength are the minor factors.

A Study on Characteristics of Bending Deformation in Cylindrical Die (원통형 다이를 이용한 굽힘의 변형특성에 관한 연구)

  • Kim, Yang-Woo;Lee, Dae-Su
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.59-66
    • /
    • 2008
  • This paper has proposed a new parameter to interpret the effects of plastic deformation in bending of strips in cylindrical die and punch. With reference to the parameter, we have provided an insight on the separation between strips and punches, the occurrence of the multi-point bending during the process of deformation, the final shapes of strips, and the springback ratios. Also using the parameter, we have considered the different effects between the bending deformation in the cylindrical die and the bending deformation due to pure bending.

Modeling Scheme for Weld-Jointed Parts for Precise Structural Analysis of Large-Scale Structures (대형구조물의 구조해석 정밀도 향상을 위한 용접부 모델링 기법)

  • Jin, Dawei;Park, Sang-Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1195-1203
    • /
    • 2012
  • Welding is a well-developed, widely used process for permanently joining metal components. However, the mechanical reliability of welded parts still offers room for improvement. A weld region consists of a fusion zone, a partially melted zone, and a heat-affected zone, and each zone has different material properties. In addition, the geometrical shape of a weld bead or fillet influences the mechanical reliability. A precise structural analysis must consider how a local welded region influences the mechanical behavior of the entire structure. This study focuses on an effective modeling scheme for the weld region. It relies on experimental and numerical methods to determine the proper correlation based on experimental results and to propose a modeling scheme for welded parts.

An Optimum Design of Sandwich Panel at Fixed Edges (고정지지된 Sandwich Panel의 최적설계에 관한 연구)

  • K.S. Kim;I.T. Kim;Y.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.115-122
    • /
    • 1992
  • A sandwich element is a special Hybrid structural form of the composite construction, which is consisted of three main parts : thin, stiff and relatively high density faces separated by a thick, light, and weaker core material. In a sandwich construction, the shear deformation of the faces. Therefore, in the calculation of the bending stiffness, the shear effect should be included. In this paper, the minimum weight is selected as an object function, as the weight critical structures are usually composed of these kind of construction. To obtain the minimum weight of sandwich panel, the principle of minimum potential energy is used and as for the design constraints, the allowable bending stress of face material, the allowable shear stress of core material, the allowable value of panel deflection and the wrinkling stress of faces are adopted, as well as the different boundary conditions. For the engineering purpose of sandwich panel design, the results are tabulated, which are calculated by using the nonlinear optimization technique SUMT.

  • PDF

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

Thermo-mechanical Behavior of WB-PBGA Packages with Pb-Sn Solder and Lead-free Solder Using Moire Interferometry (무아레 간섭계를 이용한 유연 솔더와 무연 솔더 실장 WB-PBGA 패키지의 열-기계적 변형 거동)

  • Lee, Bong-Hee;Kim, Man-Ki;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Pb-Sn solder is rapidly being replaced by lead-free solder for board-level interconnection in microelectronic package assemblies due to the environmental protection requirement. There is a general lack of mechanical reliability information available on the lead-free solder. In this study, thermo-mechanical behaviors of wire-bond plastic ball grid array (WB-PBGA) package assemblies are characterized by high-sensitivity moire interferometry. Experiments are conducted for two types of WB-PBGA packages that have Pb-Sn solder and lead-free solder as joint interconnections. Using real-time moire setup, fringe patterns are recorded and analyzed for several temperatures. Bending deformations of the assemblies and average strains of the solder balls are investigated and compared for the two type of WB-PBGA package assemblies. Results show that shear strain in #3 solder ball located near the chip shadow boundary is dominant for the failure of the package with Pb-Sn solder, while normal strain in #7 most outer solder ball is dominant for that with lead-free solder. It is also shown that the package with lead-free solder has much larger bending deformation and 10% larger maximum effective strain than the package with Pb-Sn solder at same temperature level.