• Title/Summary/Keyword: 굽힘 가공

Search Result 201, Processing Time 0.028 seconds

Applications of Force Balance Method to Several Metal Forming Problems (성형가공문제에 대한 힘 평형법의 응용)

  • 최재찬;김진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.653-660
    • /
    • 1986
  • Two uppor bound solutions, by the force balance method and by a kinematically admissible velocity field, are compared for the metal forming problems in plane strain. It is concluded that these two approaches always give identical results when the geometrical configurations of the deformation model reman the same. By detailed derivations for plastic bending of a notched bar, closed die forging, compression of a rectangular block, machining with a restricted contact tool and plane strain backward extrusion, the identity of both approaches is verified.

특성 평가용 세라믹스 시험편의 최적화 가공에 관한 연구

  • 강재훈;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.87-95
    • /
    • 1991
  • 화인 세라믹스는 최근 항공,우주산업, 정보기기 산업, 에너지 산업, 메카트로닉 스 산업 등 미래지향적 첨단 산업의 전반에걸쳐 전세계적으로 각광을 받고있는 제 3의 신소재이다. 구내의 경우도최근 대외 경쟁력을 향상시키고 무역역조를 지양하기 위한 신 상품을 개발하기 위해 단순 성형의 전,자기용 세라믹스의 용도 로 부터 탈피하여 고부가가치의 기계, 구조용 세라믹스로의 용도가 점차 확대되어 져 가고있다. 본 연구는 국내에서 생산되어지고 있는 A1$_{2}$O$_{3}$, 세라믹 스를 대상으로다양한 가공 조건에 따른 굽힘 강도치의 경향들을 실험적으로구해봄 으로써 최초로 특성 평가용 세라믹스 시험편의 최적 조건(강도 보증 및 고능률)을 확립하고자 하였다.

The Development of Inner Structure of Metallic Sandwich Plates for Bending (굽힘성형을 위한 금속 샌드위치판재의 내부구조재 개발)

  • Seong, D.Y.;Jung, C.G.;Yoon, S.J.;Shim, D.S.;Lee, S.H.;Ahn, D.G.;Yang, D.Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.126-131
    • /
    • 2006
  • Metallic sandwich plates are ultra-light materials not only with high strength and stiffness but also with other multifunctional physical properties. Inner dimpled shell structure can be fabricated by a piecewise sectional forming process, and then bonded with face sheets of the same material by resistance welding. Possible region for bending and limit radius of curvature are defined to compare the formability of sandwich plates. Tests have shown that sandwich plates with inner dimpled shell structure subject to bending have longer possible region for bending and smaller limit radius of curvature than other types of sandwich plates. The proposed inner dimpled shell structure is shown to have better formability of sandwich plates for bending than other types inner structures.

Forming Analysis and Formability Evaluation for Aluminum Tube Hydroforming (알루미늄 튜브 하이드로포밍 성형 해석 및 성형성 평가)

  • Lim H. T.;Kim H. Y.;Kim H. J.;Lee D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.243-246
    • /
    • 2005
  • A tube hydroformability testing system was designed and manufactured to observe the forming steps and to provide arbitrary combination of internal pressure and axial feed. The forming limit diagram of an aluminum tube was obtained from the free bulge test and the T-shape forming test using this system, giving the criteria for predicting failure in the hydroforming process. The hydroformability of aluminum tube according to different conditions of a prebending process was discussed, based on the finite element analysis and the forming limit test. The effects of 2D and 3D prebending on the tube hydroforming process of an automotive failing arm were evaluated and compared with each other.

  • PDF

Finite Element Analysis on the Springback in the Forging-Bending of Metal Micro-Wire (금속 마이크로 와이어의 단조-굽힘 성형에서 스프링백에 관한 해석적 연구)

  • Kang, J.J.;Hong, S.K.;Jeon, B.H.;Pyo, C.R.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.649-656
    • /
    • 2008
  • Springback is one of factors affecting precision in metal forming. Its effect is particularly prominent in bending process. In this study, bending and forging process are used in order to manufacture a micro spring with two bending region from $60{\mu}m$ diameter wire. Springback in the process lowers the precision of the micro spring. Overbending for springback compensation has wide usage in a general way. However, this method requires repeated modifications of press dies until the tolerance is allowable, which causes that production cost and time increase. In this paper, we analyzed the mechanism of springback in the forming process of the micro spring using finite element method. In addition, a simple method to control springback without modifying dies was proposed by performing numerical analysis with various parameters.

Characteristics of Bending Deformation in Aluminum Rectangular Bar by Press Die (알루미늄 각재의 프레스 굽힘 변형 특성)

  • Kim, K.S.;Hur, K.D.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • In the recent years, the production of light-weight products has become important because of increasing demands for the energy savings through weight reduction. Therefore the advanced manufacturing technology with Al alloy is continuously required in many industrial fields. Bending characteristics of Al rectangular tube with hollow and solid section has been analyzed by FE analysis in press bending with wing-die. Bending stress is affected by punch stroke and rotation of wing-die. There were different sectional sagging characteristics between the solid rectangle section and the hollow rectangle section.

FEM Analysis of spring back in bending process of center plate for molten carbonate fuel cell (용융탄산염 연료전지용 금속분리판 굽힘 공정의 유한요소 해석을 통한 스프링백 분석)

  • Lee, C.H.;Ryu, S.M.;Yang, D.Y.;Kim, Y.J.;Kang, D.W.;Chang, I.G.;Lee, T.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.220-223
    • /
    • 2009
  • Metallic bipolar plate for molten carbonate fuel cell(MCFC) is composed of the shielded slot plate and the center plate. Among these, the center plate plays an important role in gas sealing. Therefore, manufacturing of the center plate is considered one of the key issues in MCFC. The center plate is manufactured by bending process. In bending process, springback and recoiling are two main problems. By using the modified punch shape with 'step', springback and recoil are reduced. The aim of this article is to find the effect of modified punch shape. So, the bending stress along thickness direction and material direction were investigated using FEM.

  • PDF

A Study on the Process Design for Forming of Control Arm (컨트롤 암 성형을 위한 공정설계에 대한 연구)

  • Lee, O.Y.;Kim, K.S.;Yeo, H.T.;Chun, S.Y.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.365-367
    • /
    • 2009
  • The use of aluminum alloy has been interested in the automotive industry, because of its specific strength. And hollow extruded billet is more attractive than solid extruded billet but its forming application has to be precisely processed to satisfy the product quality. In this research, the process design of forming of control arm for the vehicle was studied by press bending process with hollow extruded billet. The middle protrusion portions and the middle cylindrical cup were processed separately according to the analysis. It was concluded that a useful sequence is to bend the side flange and the middle protrusion portions firstly, and then to form the middle cylindrical cup.

  • PDF

A Roll-Bite Profile Map Approach for the Prediction of Front End Bending in Plate Rolling (후판 압연공정에서 선단부 굽힘 예측을 위한 롤 바이트 형상맵 기법에 관한 연구)

  • Byon, S.M.;Lee, J.H.;Kim, S.R.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.284-290
    • /
    • 2011
  • The front end bending(FEB) behavior of material that usually occurs in plate rolling is investigated. In this paper, a rollbite profile map approach that systematically predicts the FEB slope is presented. It is based on the concurrent use of shape factors and reduction ratios to ensure an accurate value of the FEB and its slope. In order to obtain the unit roll-bite profile map, the FEB slope model was decomposed into a temperature deviation component and a roll-velocity deviation component. By mapping the results of a series of finite element analyses to the unit functions of the roll-bite profile map, it was possible to obtain a realistic prediction of the FEB slope applicable to an actual plate rolling process. Thereby, the usefulness of the present approach is clearly demonstrated.

Development of Bending Process for Crank Throw of Large Marine Engine Using Unbending Concept (언벤딩 개념을 이용한 선박용 대형 크랭크 쓰로우 굽힘단조 공법 개발)

  • Lee, S.M.;Lee, W.J.;Kim, I.H.;Park, Y.G.;Park, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.46-49
    • /
    • 2007
  • The purpose of this study is to develop the optimum shape of blank for the crank throw of large marine engine in order to reduce manufacturing cost and forging defects. The effects of the curvature radius and the height of wing part of blank selected as design variables on the defects and machining margin of final products after forging process were investigated using FEA. Based on the results, the optimum shape for the blank of the crank throw was proposed and verified by experiment.

  • PDF