• Title/Summary/Keyword: 굴착 성능

Search Result 151, Processing Time 0.023 seconds

Optimal Design for Minimizing Weight of Housing of Hydraulic Breaker (유압 브레이커의 중량 감소를 위한 하우징 최적설계)

  • Park, Gyu-Byung;Park, Chang-Hyun;Park, Yong-Shik;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.207-212
    • /
    • 2011
  • A hydraulic breaker is an attachment installed at the end of excavator arm and is used for breaking. As per the authors' knowledge, there have been no research results on reducing the weight of the hydraulic breaker even though this weight reduction is very important for improving the performance of the excavator. In this study, we minimize the weight of the housing of the hydraulic breaker under normal operating conditions, while the maximum stress of the housing is lower than the allowable stress. A meta-model, which is generated by using the CAE results for the sampling design points determined by an orthogonal array, is used to solve the minimization problem. The weight of the housing according to the optimal design is found to be lower than the original weight by 4.8% while satisfying the constraint on the maximum stress.

Development and Performance Evaluation of Real-Time Wear Measurement System of TBM Disc Cutter (TBM 디스크 커터 실시간 마모계측 시스템 개발 및 성능검증)

  • Min-Seok Ju;Min-Sung Park;Jung-Joo Kim;Seung Woo Song;Seung Chul Do;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.154-168
    • /
    • 2024
  • The Tunnel Boring Machine (TBM) disc cutter is subjected to wear and damage during the rock excavation process, and the worn disc cutter should be replaced on time. The manual inspection by workers is generally required to determine the disc cutter replacement. In this case, the workers are exposed to dangerous environments, and the measurements are sometimes inaccurate. In this study, we developed a technology that measures the disc cutter wear in real time. From a series of laboratory tests, a magnetic sensor was selected as the wear sensor, and the real-time disc cutter measurement system was developed integrating wireless communication modules, power supply and data processing board. In addition, the measurement system was verified in actual TBM excavation circumstances. As a result, it was confirmed that the accuracy and stability of the system.

Evaluation of Soil Parameters Using Adaptive Management Technique (적응형 관리 기법을 이용한 지반 물성 값의 평가)

  • Koo, Bonwhee;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.47-51
    • /
    • 2017
  • In this study, the optimization algorithm by inverse analysis that is the core of the adaptive management technique was adopted to update the soil engineering properties based on the ground response during the construction. Adaptive management technique is the framework wherein construction and design procedures are adjusted based on observations and measurements made as construction proceeds. To evaluate the performance of the adaptive management technique, the numerical simulation for the triaxial tests and the synthetic deep excavation were conducted with the Hardening Soil model. To effectively conduct the analysis, the effective parameters among the parameters employed in the model were selected based on the composite scaled sensitivity analysis. The results from the undrained triaxial tests performed with soft Chicago clays were used for the parameter calibration. The simulation for the synthetic deep excavation were conducted assuming that the soil engineering parameters obtained from the triaxial simulation represent the actual field condition. These values were used as the reference values. The observation for the synthetic deep excavation simulations was the horizontal displacement of the support wall that has the highest composite scaled sensitivity among the other possible observations. It was found that the horizontal displacement of the support wall with the various initial soil properties were converged to the reference displacement by using the adaptive management technique.

Application of Prefabricated Retaining Walls with Steel Lagging (강재 요소를 적용한 조립식 흙막이 벽체에 관한 연구)

  • Hong, Jong woo;Choi, Jae Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1277-1285
    • /
    • 2015
  • It has been known that the conventional retaining wall system with timber lagging and H pile has several problems such as the irregular gap between H-piles, cutting or adding to standard timber, back fill over first step excavation, and especially break-down accident at the disjoint of wall system. In the practical excavation, these problems may lead to worker's accident and the inefficiency of construction economy. To solve the above problems, a new method using prefabricated retaining wall was proposed and verified. The characteristics of the new method is to replace timber wall as free-sliding steel-lagging and connector. To check its verification and application, laboratory tests such as bending strength, tensile strength, and fatigue strength were carried out. Also, a pilot test in the field and numerical simulations under various ground conditions were performed. From the researches, it is found that the prefabricated retaining wall plate can be superior to the conventional timber lagging plate in the strength. It is also found that the proposed methods can be effective in the reuse of retaining wall plate and safe in the disjoint of wall system. Finally, it is desired that the proposed method will be effective in the reduction of the imported timbers and helpful in the safety of retaining wall construction.

Stability Analysis Techniques of Bracing Structure in the Hard Clay Ground According to the Variation of the Groundwater Level at the Trench Excavation (경질점성토 지반에서 Trench 굴착시 지하수위 변동에 따른 가설구조체 안정해석 기법)

  • Heo, Chang-Hwan;Seo, Sung-Tag;Kim, Hee-Duck;Jee, Hong-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.99-110
    • /
    • 2003
  • In this study, lightening material weight and normalizing structure of preventing system of landslide soil-rock in trench excavation was tried with focusing in safety construction availability and workability. In other words, risk estimate, safety management method investigation, applicability of bracing material and mechanical stability of bracing structure was studied. From these result, structural stability and structural analysis of light weight bracing structure was carried out with common structural analysis program, for examining movement mechanism of bracing structure and normalization of standard. The result are summarized as following. (1) Mechanical ability of bracing members and soil pressure parameter acting to member for ensuring mechanical propriety of bracing structural and useful of new material considering soil mechanics boundary were proposed. Also theory and method of analysis of bracing structural were proposed. (2) As a result of the structure analysis of geographical profile for light pannel used FRP as hard clay mechanical characteristics(bending moment, shear force, axial force) of panel were changed according to groundwater level and it is proved that the result of mechanical analysis is within allowable stress. Thus, light pannel is available for bracing structure in trench excavation.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Performance Assessment for Radionuclides Transport from HLW Repository (고준위방사성폐기물 처분장으로부터 핵종이동 평가)

  • 김성기;강철형;이연명;황용수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.41-46
    • /
    • 2001
  • 요오드나 세순 같은 핵종들은 고용해도 핵 종들로서 사용 후 핵연료 내 피복관 이나 연료 결정 경계면에 위치하고 있다가 고준위 방사성폐기물 처분 후 지하수가 용기를 부식시키고 용기 내부로 침투하면 고용해도를 가지고 유출된 후 공학적, 천연 방벽을 통해 최종적으로 유출되게 된다. 본 연구에서는 한국원자력연구소에서 개발한 MASCOT-K글 이용하여 고용해도 핵 종들이 조화 유출과 고용해도 유출할 경우 유출 량을 평가 분석해 보았다. 평가 결과 요오드와 같은 고용해도 핵 종인 경우 전체 핵 종 재고량의 최대 10%만이 고용해도 유출을 하지만 그 영향은 조차 유출에 비해 훨씬 중요한 것으로 판명되었다. 이러한 결과를 바탕으로 현재 국내 고 준위 처분 환경에서 보수적인 시나리오로 주목받고 있는 우물 굴착 시나리오를 대상으로 우물까지의 거리 등 입력 자료의 불확실성을 평가해 보았다. 36,000 톤의 사용 후 핵연료를 처분 대상으로 했을 때 성능 평가 결과는 현재 처분 개념이 안전함을 입증한다.

  • PDF

A Study of the Large Diameter Shield TBM Excavation for Subway Tunnels (지하철 터널에 적용된 대구경 쉴드 TBM의 굴착성능 연구 분석)

  • Lee, Seong-Won;Kang, Moon-Gu
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1500-1505
    • /
    • 2010
  • The objective of this study is controlling of the large diameter Shield TBM excavation for subway tunnels. In this paper, it will focus on the selection of Shield TBM and the problems of excavation due to unusual abrasion of the Disk Cutters and the distorted Cutter Mounts, in mixed layer of soil in below and hard rock in above, and in rock layer. And also, it will be discussed that the type of ground improvement to change and repair the Disk Cutters and the distorted Cutter Mounts, Advance Rate, Cutter Torque, etc. The results of this study will be using controlling of the excavation in various large diameter Shield TBM for subway tunnels.

  • PDF

Kinematic optimal design and analysis of kinematic/dynamic performances of a 3 degree-of-freedom excavator subsystem (3 자유도 굴착기 부속 시스템의 기구학적 최적 설계와 기구학/동력학 성능 해석)

  • Kim, Whee-Kuk;Han, Dong-Young;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.422-434
    • /
    • 1997
  • In this paper, a two-stage kinematic optimal design for a 3 degree of-freedom (DOF) excavator subsystem, which consists of boom, arm and bucket, is performed. The objective of the first stage is to find the optimal parameters of the joint-actuating mechanisms which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the second stage is to find the optimal link parameters which maximize the isotropic characteristic of the excavator subsystem throughout the workspace. It is illustrated that kinematic/dynamic performances of the kinematically optimized excavator subsystem have improved compared to those of original HE280 excavator, with respect to three performance indices such as maximum load handling capacity, maximum velocity capability, and acceleration capability.

  • PDF

Analysis of RBM한s Penetration Capacity for Upward reaming of Shaft (수직구의 상향굴착을 위한 RBM 굴진성능의 분석)

  • 이석원;조만섭;서경원;배규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.157-164
    • /
    • 2002
  • Based on the results of prototype air-shaft construction, penetration capacity of RBM(Raise Boring Machine) was analyzed and compared with TBM(Tunnel Boring Machine) performance in this study. Utilization, down time, net penetration rate and advance rate were evaluated and compared. By conducting the laboratory tests for rock properties with the analysis of penetration capacity, relation of penetration capacity and geotechnical parameters was studied. The results showed that much more higher value of utilization, however lower value of net penetration rate for RBM was obtained compared to those of TBM. In addition, as the strength of rock penetrated increased, higher value of net penetration rate was obtained contrarily to the results of TBM performance. Finally, new relationship between total hardness and net penetration rate for weak and weathered rock was derived from these results.

  • PDF