• Title/Summary/Keyword: 굴착순서

Search Result 29, Processing Time 0.027 seconds

A Numerical Study on Safety According to the Excavation Step for Large Cross Section Tunnel (대단면 터널굴착에 있어서 굴착순서에 따른 수치해석적 안정성 검토)

  • Jung, Hee-sun;Yoon, Ji-sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.335-341
    • /
    • 2005
  • In construction of a large cross section NATM tunnel, to keep the tunnel face stability by the ground itself bench cut method is commonly used. In order to necessity of partial face excavation method, we have to look for more enhanced method that can maintain better stress intensity. This paper presents a stress distribution of the Center Diaphragm Method from the partial face excavation methods, with the numerical analysis, and induced the optimal face distance, which is minimizing stress concentration and the optimal excavation step. Commerical 3 dimensional continuum analyzing FLAC-3D Ver. 2.1 program is used for the analysis. Analyses were performed to investigate ground behavior for tunnels with variable bench-length varying from 2m to 40m.

  • PDF

Modeling the Effect of Excavation Sequence and Reinforcement on the Response of Tunnels with Discontinuous Deformation Analysis Method (불연속 변형 해석법에 의한 굴착순서 및 지반보강이 터널의 거동에 미치는 영향 모델링)

  • 김용일;김영근
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • This paper presents two new extensions to the DDA method. The extensions consist of sequential loading or unloading and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the DDA method with the new extensions are presented. Simulations of the underground excavation of the Unju Tunnel of Kyungbu High Speed Railway Project in Korea were carried out to evaluate the influence of excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the DDA program with the three new extensions can now be used as d practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

Load Carrying Capacity of Top Down Prefounded Columns on Different Excavation Schedule (굴착순서에 따른 Top Down 선기둥 지지력 산정)

  • Rhim, Hong-Chul;Hwang, Hee-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.4 s.22
    • /
    • pp.45-52
    • /
    • 2006
  • Top Down method is more widely used in downtown construction, recently. As underground construction constitutes a significant portion of the total construction cost and time in Top Down construction, it is important to develop a construction method to reduce the time required in underground works. The purpose of this study is to analyze load carrying capacity of Top Down prefounded columns on different excavation schedule. When several floors are excavated, the valid buckling length of prefounded column is increased and allowable buckling stress is decreased. The result shows that all columns are safe in buckling down to B3 story whether 2 or 3 stories are excavated. However, several columns are not safe from B4 story when 2 or 3 stories are excavated straightly. With these results, a process can be designed that the first three stories in the basement are excavated, and then excavate B4 story after placing concrete on B1 and B2 floor.

Elasto-Plastic Analysis of Underground Openings Considering the Effect of Excavation (굴착영향을 고려한 지하공동의 탄소성해석)

  • 최규섭;김대홍;황신일;심재구
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.225-234
    • /
    • 1998
  • The behavior of the underground opening depends mainly on the magnitude of the initial stress existing before excavation and on the stress redistribution due to the excavation. In the case of elasto-plastic materials such as rock mass, as the structural behavior of surrounded opening due to excavation depends on the stress path, methods and sequence of excavation have influences on the results of numerical analysis. Therefore, in order to design underground openings with large cross-section such as underground nuclear power plants, radioactive waste disposal cavems, oil storage caverns, and so on more reasonably it is desirable to consider the effect of the excavation sequence in the analysis. In this paper, the underground structure is analyzed using the finite element method and the distinct element methods with a view to review the the effect of the excavation sequence. Based on the results of the analysis the followings are discussed : influence of excavation shape and sequence, effect of structural reinforcements, influence of multi caverns.

  • PDF

A preliminary study on the optimum excavation sequence of a room-and-pillar underground structure (주방식 지하구조물의 최적 굴착공정에 대한 예비 분석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Hyun, Younghwan;Hwang, Jedon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • A room-and-pillar underground structure is characterized by its grid-type array of galleries. As a result, its construction and economical efficiency can be governed by excavation sequence of galleries. Therefore, this study aims to study the optimum excavation scheme of a room-and-pillar underground structure by considering its various design factors such as ground conditions and excavation sequences. Drill-and-blast method is assumed as a excavation method for a room-and-pillar underground structure. In addition, two kinds of excavation patterns corresponding to a concurrent and a sequential excavation patterns are considered in this study. For the assumed conditions, the structural stability and the construction efficiency based on the number of faces and the travel distance of a jumbo drilling machine are analyzed for the two excavation patterns. Even though the two kinds of excavation patterns show almost the same structural stability as each other, the concurrent excavation pattern is relatively preferable to the sequential excavation pattern in terms of the number of faces in operation and travel distance of a drilling jumbo.

Evaluation of Optimal Dredging Section Area for Burying Submarine Cable across the Coastal Waterways (연안항로내 해저케이블 매설을 위한 적정 굴착단면의 산정)

  • Kim, Hui-Jae;Lee, Dong-Hyeon;Lee, Jung-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.151-153
    • /
    • 2013
  • 최근 해양에너지플랜트 및 도서지역을 연결시키기 위한 해저 파이프라인 및 통신, 전력 케이블 매설공사가 빈번하게 이루어지고 있다. 특히, 연안항로를 가로지르는 해저케이블 매설공사에는 준설장비를 동원하여 해저부를 굴착하고 케이블을 부설한 후 상단을 덮어 보호하는 일련의 작업과정이 행해지며 이 과정에서 해저저질의 상태, 준설심도, 조류 또는 연안류의 흐름강도, 수심, 통항선박 등 다양한 조건에 따라 단면의 굴착심도 및 폭이 결정되며, 작업의 순서 또는 방법에 따라 여굴의 정도도 변하게 된다. 본 연구에서는 우리나라 서해안 실제해역에서 연안 도서를 연결하는 전력, 통신망의 개통을 위한 해저케이블 부설과 관련한 굴착단면의 실태를 실제 현장여건과 관련해서 적정단면과 준설물량의 산정을 다루어 해저환경변화에 대처하기 위한 기초자료를 제공하고자 하였다. 이를 위하여 대상해역에서 주요설계 지침에 따른 해저부 굴착단면의 평가와 적정단면을 검토하였으며, 이 단면에 따른 준설 적정물량을 산정하여 작업공정에 활용할 수 있도록 하였다.

  • PDF

Stability analysis of a 2 arch tunnel considering excavation sequence (굴착단계를 고려한 2 아치 터널의 안정성 해석)

  • You, Kwang-Ho;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 2002
  • In this study, a numerical stability analysis was performed for a large tunnel considering excavation sequence. In most cases, stability of a tunnel is analyzed based on the stability of the final excavation stage only. In this study, stability analysis of a tunnel was performed at each excavation stage. In summary, it can be inferred that there is no problem in stability of the tunnel. However, thorough and careful measurements are recommended. Also, it is found that the stability of the tunnel at the 5th excavation stage when the right half of the main tunnel is excavated is rather lower than that of the tunnel at the final excavation stage.

  • PDF

A preliminary study on the excavation sequence of a room-and-pillar underground structure by the drill-and-blast method (발파 굴착에 의한 주방식 지하구조물의 굴착공기 분석 연구)

  • Lee, Chulho;Hyun, Younghwan;Song, Junho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.605-614
    • /
    • 2015
  • A room-and-pillar underground structure is characterized by its grid-type array of room and pillar. As a result, its construction and economical efficiency can be governed by excavation sequence. In this study, the construction period by the drill and blast method which can be treated as a main sequence for excavation was examined by considering the regulation for blasting and construction standard of estimation in Korea. To evaluate the construction period for the room-and-pillar underground structure constructed in 4 kinds of square-type area ($30{\times}30{\sim}57{\times}57m$), the concurrent excavation pattern which was suggested in the previous researches was used. From the suggested condition, the total construction period by drill-and-blast method can be estimated with the consideration of the construction area, number of jumbo drill and faces in operation.

Behavior of 2 Arch Tunnel in Sand (사질토지반에서 2 Arch 터널의 거동)

  • Lee, Sang-Duk;Cheon, Eun-Sook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.171-182
    • /
    • 2004
  • This study is focused on finding out the mechanical behavior of pillars and the ground adjacent to the tunnel depending on the central tunnel size and the invert during the construction of 2 arch tunnels in the sandy ground. Model tests were performed in the trap door system, which was composed of 3 separately movable plates. Central pillar was installed on the central movable plate to measure the pillar loads during the excavation of pilot tunnel and the main tunnel. The load-transfer and the loosening load were measured at the bottom plates adjacent to the 2 arch tunnels. The ground settlement and displacement of the tunnel lining were also measured. As results, not only pillar load but also the load transfer mechanism was influenced by the construction sequences, central tunnel size, and the invert.

  • PDF

Behavior of 2-Arch Tunnel with Stiffness of Grouting (그라우팅 강성도에 따른 2-Arch 터널의 거동)

  • Lee, Jong-Min;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.260-266
    • /
    • 2010
  • In this study, wish to analyze effect that affect on each tunnel (right and left tunnel) according as proceeding of leading tunnel (right tunnel), following tunnel (left tunnel) and pilot tunnel excavation through behavior of tunnel and surrounding base by model tests. And stress-transfer mechanism that occurs from in-situ loosing area and arching effect by difference of stiffness ratio and overburden heights were verified experimentally. The model tests were carried out by varying the stiffness of reinforced area and overburden height, measured deformation of tunnel and displacement of surrounding base. The model tests followed exactly the real 2-Arch tunnel construction stages.