모집단의 최적군집 수를 자동으로 결정하고 군집내의 분산은 최소로 하고 군집 간의 분산은 최대로 하는 최적 군집화에 대한 연구는 대부분의 지능형 시스템에서 필요로 하는 모형전략이다. 하지만 아직도 대부분의 군집화 과정에서 분석가의 주관적인 경험에 의존하여 군집수가 결정되어 군집화가 이루어지고 있다. 예를 들어 K-평균 군집화 알고리즘에서도 초기에 K 값을 결정해 주어야 한다. 모집단을 제대로 대표하지 못한 K 값에 의한 군집화 결과는 심각한 오류를 범하게 된다. 본 논문에서는 통계적 학습이론을 이용하여 이러한 문제점을 해결하려고 하였다. VC-차원에 의한 Support Vector를 이용하여 최적의 군집화 기법을 제안하였다. 제안 방법의 성능 평가를 위하여 UCI 기계학습 데이터를 이용하여 객관적인 실험을 수행하였다.
본 논문에서는 동적 애드 혹 네트워크(MA-NET)상에서 효율적인 라우팅을 위해 대표적인 군집단지능 알고리즘인 Ant Colony Optimization 알고리즘에 기반을 둔 정보 속성을 고려한 Data Dependent Swarm Intelligence Routing Algorithm(DSRA)을 제안한다. 제안된 알고리즘은 정보를 Realtime 정보와 Non-Realtime 정보로 분류하여 이 두 가지 속성에 의존적인 전송 알고리즘을 적용함으로써 첫째, Realtime 정보의 지연시간을 감소시켜 보다 효율적인 라우팅 경로를 구성하고 둘째, Non-Realtime 정보와 Realtime 정보의 경로 분산 효과를 통해 전체적인 네트워크의 lifetime을 증대시킨다. AODV[1], DSR[2], AntHocNet[3]과 비교를 통해 지연시간과 lifetime 모두에서 DSRA가 더 나은 성능을 보인다는 것을 실험적으로 확인한다.
컴퓨터 게임은 보이드들의 군집 행동 모델링을 위하여 플로킹이라는 지능적인 기법을 사용하고 있다. 플로킹은 약간의 컴퓨터 자원만을 이용하여 조류나 물고기와 같은 예측할 수 없는 형태의 군집 행동 패턴을 자연스럽게 모델링 할 수 있다. 단 논문에서 우리는 사실적인 수중 생태계 군집 행동 모델링을 위하여, 포식자 및 먹이로 구성되는 생태계를 구현하였다. 또한 퍼지 논리를 생태계 요소들의 본능적인 욕망을 구현하기 위하여 적용하였다 그 결과 본 모델은 생태계의 파괴를 극복하고, 자연스럽게 생태계 행동을 모델링 할 수 있다는 것을 확인하였다.
본 논문에서는 범주형 데이터의 분류를 위한 새로운 기법을 제시한다. 기존의 대표적인 퍼지 군집화 방법인 k-modes 알고리즘과 fuzzy k-modes 알고리즘은 군집의 중심을 단일 값으로 표현하고, 군집에 속하는 데이터의 빈도 수에 기반한 중신 갱신 기법을 사용하였다. 이와 같은 기존의 방법들은 분류의 경계가 모호한 데이트를 군집화할 경우, 알고리즘의 각 단계에서 발생하는 분류의 에러를 보정하지 못해 최종적으로 지역해에 빠지는 단점이 있다. 이를 극복하기 위해 본 논문에서는 군집 중심을 퍼지 집합을 이용하여 정의한다. 퍼지 군집 중심은 주어진 데이터와 군집간의 거리 관계를 퍼지 값을 이용해 표현하며, 각 군집의 중심은 데이터의 소속 정도 값을 이용해 갱신된다. 이와 같은 퍼지 중심 표현기법을 도입하여 범주형 데이터의 분류 시에 보다 세밀한 결정을 내림으로써, 인접한 군집들의 경계에서 발생하는 불확실성을 최소화한다. 기존의 대표적인 방법들과의 비교실험을 수행함으로써 제안한 방법의 성능을 검증하였다.
본 논문에서는 지능형 자동차의 주행보조 시스템 중의 하나인 교통 표지판 인식을 위한 새로운 방법을 제안한다. 제안한 방법은 잡음, 회전, 크기 등의 변형된 교통 표지판으로부터 기하학적 방법을 이용하여 변형된 정도를 추정하여 교통 표지판 원형으로 보정한다. 그리고 교통 표지판 인식을 위해서 보정된 표지판 영상으로부터 순차적 색기반 군집화(Sequential color-based clustering)에 의한 주의, 규제, 지시, 보조 등의 1차적 분류에 따라서 해당 교통 표지판의 형태 특징인 인식 심벌을 추출한다. 그리고 추출된 인식 심벌에 원형 추척법을 적용하여 교통 표지판 최종 인식 작업을 수행한다. 제안하는 방법의 성능 평가를 위해서 교통 표지판 영상에 잡음, 회전, 크기 등의 임의 변형을 적용하여 다양한 실험 영상을 만들고, 적용한 결과 단일 변형에서는 95%, 혼합 변형에서는 93% 이상의 인식률을 보인다.
본 논문은 퍼지추론을 통해 개체의 유사성과 적합도의 종합적 평가를 이용한 유전알고리즘의 선태연산자를 제안한다. 단일 집단을 가상적으로 임의의 n 개의 개체군을 나누고, 개체의 적합도와 유사도에 기반한 퍼지추론을 통해, 효율적인 계층화를 구성하고자 한다. 동시에 점진형(steady-state) 진화방식과 결합시켜 계층화된 군집내에서 개체들이 조기에 수렴하는 현상을 방지해 줄 수 있도록 하고, 적은 개체를 이용하여 효율적인 진화가 가능하도록 구현하였다. 2가지 기만적 문제에 대해서 다른 선태 연산자들의 결과와 비교하였으며, 만족할만한 성능을 얻었다.
다중 에이전트 학습이란 다중 에이전트 환경에서 에이전트간의 조정을 위한 행동전략을 학습하는 것을 말한다. 본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 서로 독립적으로 대표적인 강화학습법인 Q학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동 공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 먹이와 사냥꾼 문제(Prey and Hunters Problem)를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM을 이용한 일반화 방법인 QSOM 학습법을 제안한다. 이 방법은 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 이전에 경험하지 못했던 상태-행동들에 대한 Q값을 예측하고 이용할 수 있다는 장점이 있다. 또한 본 논문에서는 실험을 통해 QSOM 학습법의 일반화 효과와 성능을 평가하였다.
도심지역의 하수관거 시스템은 우수 수용능력 및 하수 월류 발생 등의 시스템의 한계점을 가지고 있어, 강우시 우수 유출수로 인한 침수저감과 더불어 도시비점오염원의 저감에 모두 대응할 수 있는 저류시설의 도입이 주목받고 시작하였다. 최근 환경부에서는 방재적 우수관리와 더불어 합류식 하수관거 월류수, 분류식 우수관거 유출수 처리를 포함하는 다기능 저류시설을 "하수저류시설"이라 통칭하고, 이의 도입을 적극 추진하고 있는 실정이다. 반면 대규모 단일 저류시설 설치의 경우에는 공간 확보의 문제가 발생할 수 있으며, 이에 대안으로는 중 소규모의 분산형 저류시설 설치 및 운영을 들 수 있다. 본 연구에서는 분산형 저류시설-하수관망 네트워크 시스템의 최적 운용을 위한 모델 예측 제어기법을 제안한다. 이를 위해 첫째로 네트워크 시스템의 각 구성 요소의 수리모델을 제시함으로써 보다 정밀한 하수관망 네트워크의 거동을 모사하고자 한다. 둘째로 제안된 모델을 기반으로 현재의 강우 유입량을 고려하여 각 저류조의 수위, 하수관로의 유입/유출량을 예측하여, 입자군집 최적화 알고리즘을 이용한 모델 예측 제어기법을 바탕으로 주어진 제약조건을 만족하며 상황을 바탕으로 제안된 제어기법의 사용여부에 따른 효과를 비교 분석하고, 이의 타당성을 검증하고자 한다.
다양한 임무에서 활용 가능한 무인기 다개체 시스템은 단일 무인기보다 복잡하므로 효율적인 대형 제어방식이 요구된다. 특히 광역 탐색임무에 있어 통신량 및 연산량 부담이 적으며, 무인기간 자율적인 대형 형성이 가능한 분산 제어형의 유동적인 대형 형성이 필요하다. 본 연구는 스캔 면적의 확장 및 탐색 성능향상을 위해 Swarm 대형과 뱅크 정렬 대형, 대형 전체 운동을 고려한 대형 형성 알고리즘을 제안한다. 본 알고리즘은 상대거리에 대해서 2차 진동 특성을 가지며 parameter tuning을 통해 알고리즘을 설계할 수 있다. 또한 통상적인 무인기 시스템에 적합하도록 제어명령을 변환하였고, 시뮬레이션을 통해 알고리즘의 대형 형성 및 운동에 대한 성능을 입증하였다.
패턴 분류는 실세계의 객체를 표현한 다양한 형태의 패턴 정보를 추출하여, 이것이 어떤 부류(클래스)인가를 결정하는 것이다. 패턴 분류 기술은 데이터 마이닝, 산업 자동화나 업무자동화를 위한 컴퓨터 응용 소프트웨어 기술로서 현재 다양한 분야에서 활용되고 있다. 패턴 분류 기술의 최대 목표는 분류 성능 향상이며 이것을 위해 지난 40년간 많은 연구자들이 다양한 접근 방법들을 시도해 왔다. 주로 이용되는 단일 분류 방법들로는 패턴들의 확률적 추론에 기반한 베이즈 분류기, 결정 트리, 거리함수를 이용하는 방법, 신경망, 군집화 등이 있으나 대용량 다차원 데이터를 분석하기에는 효율적이지 못하다. 따라서 상호 보완적인 여러 분류기들을 사용해 결합을 통하여 성능 향상에 도움을 주고 있는 다중 분류기 시스템에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 다중 SVM(Support Vector Machine) 분류기에 관한 기존 연구의 문제점을 지적하고 새로운 모델을 제안한다. SVM을 다중 클래스 분류기로 확장하기 위해 일대다 정책을 기반으로 하여 각각의 SVM 출력값을 비선형 패턴을 갖는 신호로 간주하고 이를 신경망에 학습하여 최종 분류 성능 결과를 결합하는 모델인 BORSE(Bootstrap Resampling SVM by Ensemble)를 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.