• Title/Summary/Keyword: 국지성 집중호우

Search Result 273, Processing Time 0.028 seconds

Analysis of Impulse Wave Characteristics Generated by Landslide Models with Various Mass Ratio : Focus on Wave Amplitude (질량비 변화에 따른 산사태 모형으로 인해 생성되는 충격파의 특성분석 : 파진폭을 중심으로)

  • Hanwool Cho;Hojin Lee;Sungduk Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.5-11
    • /
    • 2023
  • Impulse waves generated by landslides near water bodies can lead to fatal damage to human life and surrounding infrastructure. These impulse waves are generally called landslide-impulsed waves and occur without being limited to a specific area. Recently, localized torrential rains have frequently occurred due to the influence of abnormal weather, both the frequency and scale of landslides occurring in Korea are increasing. Therefore, in this study, the experiments were conducted according to the mass ratio of the landslide models, and among the characteristics of the generated landslide-impulse waves. And the wave amplitude was observed and analyzed. In this study, a total of 75 experiments were conducted by repeating the experiment 5 times for 15 cases with mass ratios of 5 landslide models and 3 types of slope angles. As a result of experiments with different mass ratios of landslide models, if the landslides have the same initial energy, the size of the landslide-impulse waves generated by mixing granular and block forms is higher than the size of the landslide-impulse waves generated by pure granular and block landslides. It is analyzed that the size may be larger.

ANALYSIS ON GPS PWV EFFECTS AS AN INITIAL INPUT DATA OF NWP MODEL (수치예보모델 초기치로서 GPS 가강수량 영향 분석)

  • Lee, Jae-Won;Cho, Jung-Ho;Baek, Jeong-Ho;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.285-296
    • /
    • 2007
  • The Precipitable Water Vapor (PWV) from GPS with high resolution in terms of time and space might reduce the limitations of the numerical weather prediction (NWP) model for easily variable phenomena, such as precipitation and cloud. We have converted to PWV from Global Positioning System (GPS) data of Korea Astronomy and Space Science Institute (KASI) and Ministry of Maritime Affairs & Fisheries (MOMAF). First of all, we have selected the heavy rainfall case of having a predictability limitation in time and space due to small-scale motion. In order to evaluate the effect for GPS PWV, we have executed the sensitivity experiment with PWV from GPS data over Korean peninsula in the Weather Research & Forecasting 3-Dimensional Variational (WRF-3DVAR). We have also suggested the direction of further research for an improvement of the predictability of NWP model on the basis of this case.

Development of water elevation prediction algorithm using unstructured data : Application to Cheongdam Bridge, Korea (비정형화 데이터를 활용한 수위예측 알고리즘 개발 : 청담대교 적용)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Seung Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.121-121
    • /
    • 2019
  • 특정 지역에 집중적으로 비가 내리는 현상인 국지성호우가 빈번히 발생함에 따라 하천 주변 사회기반시설의 침수 위험성이 증가하고 있다. 침수 위험성 판단 여부는 주로 수위정보를 이용하며 수위 예측은 대부분 수치모형을 이용한다. 본 연구에서는 빅데이터 기반의 RNN(Recurrent Neural Networks)기법 알고리즘을 활용하여 수위를 예측하였다. 연구대상지는 조위의 영향을 많이 받는 한강 전역을 대상으로 하였다. 2008년~2018년(10개년)의 실제 침수 피해 실적을 조사한 결과 잠수교, 한강대교, 청담대교 등에서 침수 피해 발생률이 높게 나타났고 SNS(Social Network Services)와 같은 비정형화 자료에서는 청담대교가 가장 많이 태그(Tag)되어 청담대교를 연구범위로 설정하였다. 본 연구에서는 Python에서 제공하는 Tensor flow Library를 이용하여 수위예측 알고리즘을 적용하였다. 데이터는 정형화 데이터와 비정형 데이터를 사용하였으며 정형화 데이터는 한강홍수 통제소나 기상청에서 제공하는 최근 10년간의 (2008~2018) 수위 및 강우량 자료를 수집하였다. 비정형화 데이터는 SNS를 이용하여 민간 정보를 수집하여 정형화된 자료와 함께 전체자료를 구축하였다. 민감도 분석을 통하여 모델의 은닉층(5), 학습률(0.02) 및 반복횟수(100)의 최적값을 설정하였고, 24시간 동안의 데이터를 이용하여 3시간 후의 수위를 예측하였다. 2008년~ 2017년 까지의 데이터는 학습 데이터로 사용하였으며 2018년의 수위를 예측 및 평가하였다. 2018년의 관측수위 자료와 비교한 결과 90% 이상의 데이터가 10% 이내의 오차를 나타내었으며, 첨두수위도 비교적 정확하게 예측되는 것을 확인하였다. 향후 수위와 강우량뿐만 아니라 다양한 인자들도 고려한다면 보다 신속하고 정확한 예측 정보를 얻을 수 있을 것으로 기대된다.

  • PDF

Effect of Urbanization on Rainfall Events during the 2010 Summer Intensive Observation Period over Seoul Metropolitan Area (2010년 여름철 수도권 집중관측기간 강수 사례들에서 나타나는 도시화 효과)

  • Kim, Do-Woo;Kim, Yeon-Hee;Kim, Ki-Hoon;Shin, Seung-Sook;Kim, Dong-Kyun;Hwang, Yoon-Jeong;Park, Jong-Im;Choi, Da-Young;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.219-232
    • /
    • 2012
  • The intensive observation (ProbeX-2010) was performed to investigate an urban effect on summer rainfall over the Seoul metropolitan area from 13 August to 3 September 2010. Two kinds of urban effect were detected. First, weak rainfall (${\leq}1\;mm\;hr^{-1}$) was observed more frequently in the downwind area of Seoul than any other area of the country. The high frequency of weak rainfall in the downwind area was also confirmed from the recent five years of observational data (2006-2010). Because the high frequency was more apparent in mountainous regions during nighttime, the weak rainfall seems to be caused by a combined effect of urbanization and topography. Second, sporadically, a convective system was developed rapidly in the downwind area of Seoul, causing heavy rainfall (${\geq}10\;mm\;hr^{-1}$). It can be most clearly seen in series of radar images around 1300-1500 KST 27 August 2010. We investigated in detail the synoptic and local weather and upper air conditions. As a result, not only urban-induced high sensible heat but also conditionally unstable atmosphere (especially unstable in low level) and low level moisture were pointed out as important factors that contributed to urban-induced heavy rainfall.

Prediction of Urban Flood Extent by LSTM Model and Logistic Regression (LSTM 모형과 로지스틱 회귀를 통한 도시 침수 범위의 예측)

  • Kim, Hyun Il;Han, Kun Yeun;Lee, Jae Yeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.273-283
    • /
    • 2020
  • Because of climate change, the occurrence of localized and heavy rainfall is increasing. It is important to predict floods in urban areas that have suffered inundation in the past. For flood prediction, not only numerical analysis models but also machine learning-based models can be applied. The LSTM (Long Short-Term Memory) neural network used in this study is appropriate for sequence data, but it demands a lot of data. However, rainfall that causes flooding does not appear every year in a single urban basin, meaning it is difficult to collect enough data for deep learning. Therefore, in addition to the rainfall observed in the study area, the observed rainfall in another urban basin was applied in the predictive model. The LSTM neural network was used for predicting the total overflow, and the result of the SWMM (Storm Water Management Model) was applied as target data. The prediction of the inundation map was performed by using logistic regression; the independent variable was the total overflow and the dependent variable was the presence or absence of flooding in each grid. The dependent variable of logistic regression was collected through the simulation results of a two-dimensional flood model. The input data of the two-dimensional flood model were the overflow at each manhole calculated by the SWMM. According to the LSTM neural network parameters, the prediction results of total overflow were compared. Four predictive models were used in this study depending on the parameter of the LSTM. The average RMSE (Root Mean Square Error) for verification and testing was 1.4279 ㎥/s, 1.0079 ㎥/s for the four LSTM models. The minimum RMSE of the verification and testing was calculated as 1.1655 ㎥/s and 0.8797 ㎥/s. It was confirmed that the total overflow can be predicted similarly to the SWMM simulation results. The prediction of inundation extent was performed by linking the logistic regression with the results of the LSTM neural network, and the maximum area fitness was 97.33 % when more than 0.5 m depth was considered. The methodology presented in this study would be helpful in improving urban flood response based on deep learning methodology.

Study on Runoff Variation by Spatial Resolution of Input GIS Data by using Distributed Rainfall-Runoff Model (분포형 강우-유출 모형의 입력자료 해상도에 따른 유출변동 연구)

  • Jung, Chung Gil;Moon, Jang Won;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.767-776
    • /
    • 2014
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Floods are one of the most deadly and damaging natural disasters known to mankind. The flood forecasting and warning system concentrates on reducing injuries, deaths, and property damage caused by floods. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall-runoff model. In this study, grid resolution depending on the topographic factor in rainfall-runoff models presents how to respond. semi-distribution of rainfall-runoff model using the model GRM simulated and calibrated rainfall-runoff in the Gamcheon and Naeseongcheon watershed. To run the GRM model, input grid data used rainfall (two event), DEM, landuse and soil. This study selected cell size of 500 m(basic), 1 km, 2 km, 5 km, 10 km and 12 km. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, runoff volume and peak discharge which simulated cell size of DEM 500 m~12 km were continuously reduced. that results showed decrease tendency. However, input grid data except for DEM have not contributed increase or decrease runoff tendency. These results showed that the more increased cell size of DEM make the more decreased slope value because of the increased horizontal distance.

A Study on Changes in Habitat Enviroment of Wild Birds in Urban Rivers according to Climate Change - A Case Study of Tancheon Ecological and Landscape Conservation Area - (기후변화에 따른 도시하천의 야생조류 서식환경 변화 연구 - 탄천 생태·경관보전지역를 사례로 -)

  • Han, Jeong-Hyeon;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.79-95
    • /
    • 2024
  • The purpose of this study was to find the changes in the habitat of wild birds caused by climate change in urban rivers and protected areas that greatly require ecological functions. In the future, this study can be used as a management index to protect the urban river ecosystem and maintain the health of sustainable urban rivers, thereby ensuring biodiversity. The Tancheon Ecological and Landscape Conservation Area, selected as a target site, has been affected by climate change. The four seasons of Korea have a distinct temperate climate, but the average annual temperature in Seoul has risen by 2.4-2.8℃ over the last 40 years. Winter temperatures tended to gradually increase. Precipitation, which was concentrated from June to August, is now changing into localized torrential rain and a uniform precipitation pattern of several months. Climate change causes irregular and unforeseen features. Climate change has been shown to have various effects on urban river ecosystems. The decrease in the area of water surface and sedimentary land impacted river shape change and has led to large-scale terrestrialization. Plants showed disturbance, and the vegetation was simplified. The emergence of national climate change indicator species, the development of foreign herbaceous plants, the change of dry land native herbaceous species, and wet intelligence vegetation were developed. Wild birds appeared in the territory of winter-summer migratory. In addition, species change and the populations of migratory birds also occurred. It was judged that fluctuations in temperature and precipitation and non-predictive characteristics affect the hydrological environment, plant ecology, and wild birds connecting with the river ecosystem. The results of this study were to analyze how climate change affects the habitat of wild birds and to develop a management index for river ecological and landscape conservation areas where environmental and ecological functions in cities operate. This study can serve as a basic study at the level of ecosystem services to improve the health of urban rivers and create a foundation for biodiversity.

The Inundation Simulation for Inland by River Hydraulic Structures (하천 수리구조물에 의한 제내지 침수모의)

  • Choo, Tai-Ho;Yoon, Hyeon-Cheol;Noh, Hyun-Suk;Yun, Gwan-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2460-2468
    • /
    • 2014
  • A local rain that is concentrated in specific area in a short time frequently occurs due to recent abnormal weather. To prevent potential flood disasters, therefore, it is necessary to be established to the flood control system. Checking the river design standard, however, hydrologic design frequency of water gate is only marked as over 20 years, so this fact shows that the standard is unclear. The inland inundation modeling considering the stage in a river and quantitative assessment are required to reduce flood damage. The simulation for internal inundation is very complex and is time-consuming due to considering hydraulic hydrology characteristics at the same time. Using the already established river master plan, consequently, this study proposed the simple and convenient method for assessment of the internal inundation simulation. Using the proposed method in the upper and middle regions of a river, influences for design frequency or water gate location were assessed by applying the nine probability precipitation with design frequency and by targeting the water gates which are installed in five inlands.

Flash flood risk indicator for ungauged area of Seoul metropolitan region (수도권 미계측지역에 대한 돌발홍수위험도 산정 연구)

  • Lee, Byong Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.94-94
    • /
    • 2016
  • 돌발홍수는 수십 $km^2$ 이하의 유역에서 강우가 발생한 후 6시간 이내의 단시간에 홍수징후가 나타나는 현상으로 정의될 수 있다. 돌발홍수를 잘 예측하기 위해서는 국지적으로 발생하는 집중 호우를 잘 예측해야 하며 유역내 공간적인 수문반응해석을 통해 돌발홍수를 예측하는 기술이 요구된다. 본 연구에서는 유역내 공간적인 수문반응을 잘 모의하기 위해 TOPLATS 지표해석모형을 이용하였다. TOPLATS(TOPMODEL based Land Atmosphere Transfer Scheme) 모형은 물수지와 에너지수지를 통해 단위격자에 대한 실제증발산량, 토양수분량, 지하수면깊이, 지표유출량, 잠열, 현열, 지열, 순복사량 등을 모의하며 소유역단위로 지하수면깊이를 재분포시키는 특성을 가지고 있다. 돌발홍수 위험도를 산정하기 위해 실제 돌발홍수 피해사례를 조사하였으며 피해지역과 대응되는 격자 수문성분과의 상관성 분석을 통해 돌발홍수 위험도 모형을 산정하였다. 대상지역은 수도권 전체지역을 모의하기 위해 한강, 임진강, 안성천 유역을 대상지역으로 선정하였다. 수도권 지역은 약 11,930 km2이며 2009~2012년동안 총 38건의 돌발홍수 피해사례가 신고되었다. 기상자료는 기상청 AWS와 ASOS 시단위 강우, 기온, 상대습도, 풍속, 일조, 기압자료를 이용하였다. 돌발홍수 피해사례 38건에 대해 대응되는 모의격자의 수문성분을 분석하였으며 27(71%)에서 구조요청시점에 대해 강우량, 지표유출량, 토양수분량, 지하수면깊이가 적절하게 모의되는 것을 확인하였다. 강우조건에 따른 돌발홍수 위험도는 구조요청시점 기준 선행시간 4~6시간까지 71~87%, 구조요청시점으로 한정된 0시간에서는 42~52%로 나타났다. 이상의 결과로부터 지표해석모델을 이용한 격자 수문성분과 통계적 돌발홍수지수모형으로부터 산정된 돌발홍수 위험도는 산지 미계측지역에 대한 돌발홍수를 예측하는데 활용될 수 있을 것으로 판단된다.

  • PDF

An Estimation to Landslide Vulnerable Area of Rainfall Condition using GIS (GIS를 이용한 강우조건에 따른 산사태 취약지 평가)

  • Yang, In-Tae;Chun, Ki-Sun;Park, Jae-Kook;Lee, Sang-Yeun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.1 s.39
    • /
    • pp.39-46
    • /
    • 2007
  • Most areas in Kangwon Province are mountainous and vulnerable to landslide due to the rainy season in summer and the localized torrential downpour triggered by abnormal climate. In particular, the rainfall is one of direct reasons for landslide. In accordance with the analysis of the relevance between the landslide areas and the accumulated rainfall for four months, there are severe damages of landslide to the areas having more than 1,100 mm of rainfall during three(3) months. Further, it indicates that the more the accumulated rainfall is the greater the size of landslide. These analyses show that the rainfall causes the possible and potential landslide in the vulnerable areas. And also, it means that there exist strong possibilities of landslide even in the areas of lower vulnerability if the amount of rainfall is above certain standard level. Accordingly, in this study we stored the GIS database on the causes and factors of landslide in the southern parts of Kangwon province and conducted simulations on the change of distribution of vulnerable areas by varying the rainfall conditions and by using the evaluation data of landslide vulnerability. As such a result, we found that the landslide could potentially occur if the amount of rainfall is 200 mm and more.

  • PDF