DOI QR코드

DOI QR Code

Analysis of Impulse Wave Characteristics Generated by Landslide Models with Various Mass Ratio : Focus on Wave Amplitude

질량비 변화에 따른 산사태 모형으로 인해 생성되는 충격파의 특성분석 : 파진폭을 중심으로

  • Hanwool Cho (School of Civil Engineering, Chungbuk National University) ;
  • Hojin Lee (School of Civil Engineering, Chungbuk, Chungbuk National University) ;
  • Sungduk Kim (Division of Human and Environmental Design, Cheongju University)
  • Received : 2023.01.20
  • Accepted : 2023.03.10
  • Published : 2023.04.01

Abstract

Impulse waves generated by landslides near water bodies can lead to fatal damage to human life and surrounding infrastructure. These impulse waves are generally called landslide-impulsed waves and occur without being limited to a specific area. Recently, localized torrential rains have frequently occurred due to the influence of abnormal weather, both the frequency and scale of landslides occurring in Korea are increasing. Therefore, in this study, the experiments were conducted according to the mass ratio of the landslide models, and among the characteristics of the generated landslide-impulse waves. And the wave amplitude was observed and analyzed. In this study, a total of 75 experiments were conducted by repeating the experiment 5 times for 15 cases with mass ratios of 5 landslide models and 3 types of slope angles. As a result of experiments with different mass ratios of landslide models, if the landslides have the same initial energy, the size of the landslide-impulse waves generated by mixing granular and block forms is higher than the size of the landslide-impulse waves generated by pure granular and block landslides. It is analyzed that the size may be larger.

수역 인근에서 산사태로 인해 발생되는 충격파는 인명과 주변 기반시설에 치명적인 피해로 이어질 수 있다. 이러한 충격파는 일반적으로 산사태 충격파라고 하며, 특정지역에 국한되지 않고 발생한다. 최근에는 이상기후의 영향으로 국지성 집중호우가 빈번하게 발생하면서 국내에서 발생하는 산사태의 발생빈도와 발생규모 모두 증가하고 있다. 이에 본 연구에서는 산사태 모형의 질량비 변화에 따른 실험을 수행하였으며, 생성되는 충격파의 특성 중 파의 진폭을 중점으로 관측 및 분석하였다. 본 연구에서는 5가지의 산사태 모형의 질량비, 3가지의 수로경사로 15가지의 케이스에 대하여 5회 반복실험하여 총 75회의 실험을 수행하였다. 산사태 모형의 질량비를 달리하며 실험을 해본 결과, 만약 초기 에너지가 동일한 산사태의 경우 순수한 입상, 순수한 블록 형태의 산사태에 의해서 생성되는 충격파의 크기보다 입상형태와 블록형태가 섞여 함께 거동하며 생성하는 충격파의 크기가 더 클 수 있다고 분석된다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2021R1I1A3054408).

References

  1. Ataie-Ashtiani, B. and Najafi-Jilani, A. (2008), Laboratory investigations on impulsive waves caused by underwater landslide, Coastal Engineering, Vol. 55, No. 12, pp. 989~1004. https://doi.org/10.1016/j.coastaleng.2008.03.003
  2. Evers, F. M. and Hager, W. H. (2015), Impulse wave generation: Comparison of free granular with mesh-packed slides, Journal of marine science and engineering, Vol. 3, No. 1, pp. 100~110. https://doi.org/10.3390/jmse3010100
  3. Fritz, H. M., Hager, W. H. and Minor, H. E. (2003), Landslide generated impulse waves, Experiments in Fluids, Vol. 35, No. 6, pp. 505~519. https://doi.org/10.1007/s00348-003-0659-0
  4. Fritz, H. M. and Moser, P. (2003), Pneumatic landslide generator, International Journal of Fluid Power, Vol. 4, No. 1, pp. 49~57. https://doi.org/10.1080/14399776.2003.10781155
  5. Fuchs, H., Pfister, M., Boes, R., Perzlmaier, S. and Reindl, R. (2011), Impulse waves due to avalanche impact into Kuehtai reservoir; Impulswellen infolge Lawineneinstoss in den Speicher Kuehtai, Wasserwirtschaft, Vol. 101, No. 1-2, pp. 54~56.
  6. Fukii, N., Matsuyama, M. and Mori, H. (2018), Hydraulic experiments of tsunami generation with plane water tank due to landslide, Doboku Gakkai Ronbunshu B2, Kaigan Kogaku (Online), Vol. 74, No. 2, pp. 1~145.
  7. Heller, V., Bruggemann, M., Spinneken, J. and Rogers, B. D. (2016), Composite modelling of subaerial landslide-tsunamis in different water body geometries and novel insight into slide and wave kinematics, Coastal Engineering, Vol. 109, pp. 20~41. https://doi.org/10.1016/j.coastaleng.2015.12.004
  8. Heller, V. and Hager, W. H. (2014), A universal parameter to predict subaerial landslide tsunamis?, Journal of Marine Science and Engineering, Vol. 2, No. 2, pp. 400~412. https://doi.org/10.3390/jmse2020400
  9. Heller, V. and Spinneken, J. (2013), Improved landslide-tsunami prediction: effects of block model parameters and slide model, Journal of Geophysical Research: Oceans, Vol. 118, No. 3, pp. 1489~1507. https://doi.org/10.1002/jgrc.20099
  10. Huang, B., Wang, S. C. and Zhao, Y. B. (2017), Impulse waves in reservoirs generated by landslides into shallow water, Coastal Engineering, Vol. 123, pp. 52~61.
  11. Jang, H., N. and Lee, J. Y. (2007), Case Study of Earthquake Damage in Korea and Countries, Journal of Civil Engineers, Vol. 55, No. 4, pp. 133~139 (In Korean).
  12. Kim, B. J. and Paik, J. C. (2021), 3D numerical modeling of impact wave induced by landslide using a multiphase flow model, Joumal of Korea Water Resources Association,Vol. 54, No. 11, pp. 943~953 (In Korean).
  13. Lee, J. H. (1998), The characteristics of the earthquake-induced landslide disaster and the influence of forests, Monthly Forestry Information, Vol. 86, pp. 44~47 (In Korean).
  14. Lee, S. I., Seo, J. I., Kim, J. H., Ryu, D. S., Seo, J. P., Kim, D. Y., and Lee, C. W. (2017), International research trend on mountainous sediment-related disasters induced by earthquakes, Journal of Korean Forest Society, Vol. 106, No. 4, pp. 431~440 (In Korean).
  15. Lindstrom, E. K. (2016), Waves generated by subaerial slides with various porosities, Coastal Engineering, Vol. 116, pp. 170~179. https://doi.org/10.1016/j.coastaleng.2016.07.001
  16. Lovholt, F., Pedersen, G. and Gisler, G. (2008), Oceanic propagation of a potential tsunami from the La Palma Island, Journal of Geophysical Research, Oceans, Vol. 113, C09026.
  17. Miller, D. J. (1960), The Alaska earthquake of July 10, 1958: giant wave in Lituya Bay, Bulletin of the Seismological Society of America, Vol. 50, No. 2, pp. 253~266. https://doi.org/10.1785/BSSA0500020253
  18. Saelevik, G., Jensen, A. and Pedersen, G. (2009), Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway, Coastal Engineering, Vol. 56, No. 9, pp. 897~906. https://doi.org/10.1016/j.coastaleng.2009.04.007
  19. Semenza, E. and Ghirotti, M. (2000), History of the 1963 Vaiont slide: the importance of geological factors, Bulletin of Engineering Geology and the Environment, Vol. 59, No. 2, pp. 87~97. https://doi.org/10.1007/s100640000067
  20. Seo, J. L., Lee, S. I., Kweon, H. K., Jun, C. W., Kim, S. W., Jun, K. W., Kim, J. H. and Lee, C. W. (2018), Future research direction in response to mountainous sediment-related disasters induced by earthquakes in South Korea, Crisisonomy, Vol. 14, No. 3, pp. 119~138 (In Korean). https://doi.org/10.14251/crisisonomy.2018.14.3.119
  21. Seo, J. P., Eu, S., Lee, K. H., Lee, C. W. and Woo, C. S. (2021), A Study on Risk Assessment Methods for Earthquake-Induced Landslides, Journal of the Society of Disaster Information, Vol. 17, No. 4, pp. 697~709 (In Korean).
  22. Vischer, D. and Hager, W. H. (1998), Dam hydraulics (Vol. 2), Chichester: Wiley