• Title/Summary/Keyword: 국지기온

Search Result 94, Processing Time 0.029 seconds

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Characteristics of Springtime Temperature Within Mt. Youngmun Valley (용문산 산악지역의 봄철 기온특성)

  • Chun, Ji Min;Kim, Kyu Rang;Lee, Seon-Yong;Kang, Wee Soo;Choi, Jong Mun;Hong, Soon Sung;Park, Jong-Seon;Park, Eun-U;Kim, Yong Sam;Choi, Young-Jean;Jung, Hyun-Sook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.39-50
    • /
    • 2014
  • This paper reviews the results of recent observations in the Yeonsuri valley of Mt. Youngmun during springtime (March to May) in 2012. Automated weather stations were installed at twelve sites in the valley to measure temperature and 2, 3 dimensional wind. We examined temporal and spatial characteristics of temperatures and wind data. The Yeonsuri valley springtime average temperature lapse rate between the top and bottom of the entire period is $-0.44^{\circ}C/100$ m. It can be changed by the synoptic weather conditions, the lapse rates is greatest in order of clear days ($-0.48^{\circ}C/100$ m), rainy ($-0.41^{\circ}C/100$ m) and cloudy days ($-0.40^{\circ}C/100$ m). In the night, the temperature inversion layer (thermal belt) and the cold pool are formed within the valley. In addition, we measured temperature and wind distribution from the bottom to 3.5 m, the cold layers existed up to 1.5 m, which were affected by ground mixed layer. The results will provide useful guidance on agricultural practices as well as model simulations.

Development of Climate Analysis Seoul(CAS) Maps Based on Landuse and Meteorogical Model (토지이용도와 기상모델을 이용한 서울기후분석(CAS)지도 개발)

  • Yi, Chae-Yeon;Eum, Jeong-Hee;Choi, Young-Jean;Kim, Kyu-Rang;Scherer, Dieter;Fehrenbach, Ute;Kim, Geun-Hoi
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.12-25
    • /
    • 2011
  • It is needed to preserve good effects and to prevent bad influences on local climate in urban and environmental planning. This study seeks to develop climate analysis maps to provide realistic information considering local air temperature and wind flows. Quantitative analyses are conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod - a mesoscale weather model. The CAS helps The easier analysis and assessment of urban development on local climate. It will contribute to the better life of the people in cities by providing better understanding of the local climate to the urban space planners.

Correlation between Spring Weather Factors and Local Wind Waves in the Nakdong River Estuary, Korea (낙동강 하구역 해양물리환경에 미치는 영향인자 비교분석(II) - 춘계 국지 해양파랑과 기상인자 -)

  • Yoo, Chang-Il;Yoon, Han-Sam;Park, Hyo-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • The aim of this study was to determine the characteristics of wave transformation in the shallow water of the Nakdong River estuary due to variations in air pressure, air temperature, wind speed, and wind direction. We analyzed the correlation between weather factors and wind waves in offshore regions near Geoje Island and the Nakdong River estuary in April and May 2007. The weather and wind wave data were obtained from the automatic ocean observation buoy near Geoje Island operated by the Korean Meteorological Administration (KMA). For the estuary region, the wind wave information was the result of field observations, and weather data were obtained from the Busan Meteorological Station. Field observations of water waves in April and May showed that the maximum wave height decreased by about 2.2 m. M oreover, wave height decreased significantly by about 1.3 m due to the reduction in wave energy caused by the water waves propagating from Geoje buoy to the Nakdong River estuary. We conclude that offshore or wind waves coming into the Nakdong River estuary showed considerable height variation due to the prevailing weather conditions, especially wind speed and direction. In particular, headwinds tended to decrease the wave size in inverse proportion to the wind speed.

  • PDF

Temperature Characteristics of Wet-mixing Solidified Soil Pavement (습식교반경화토포장의 온도특성)

  • Yoo Ji-Hyeung;Lee Seong-Won;Kim Dae-Sung
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.45-54
    • /
    • 2006
  • The Construction policy of government ever since 1970s have brought the economical growth, but has been causing environmental problems. Most roads were paved either asphalt concrete or portland cement concrete. These types of pavements has caused to rise temperature by making local heat islands in urban during summer time. Recently the wet-mixing solidified soil pavement, a kind of soil-cement, has developed and has been applied to the environment-oriented pavement. The solidified soil wet-mixed is placed on the subgrade along with asphalt concrete and portland cement concrete. Thermistors are laid in these field test pavements. The temperature gradients of these pavements are automatically measured with time. As the results of this test, the equation estimating surface temperature of pavement is proposed by analyzing measured temperature data. It is shown that the temperature change within the surface layer due to the change of air temperature is the greatest in the asphalt mixture and the least in the solidified soil mixture. Since it is proven that this wet-mixing solidified soil pavement emit less radiant heat than other existed pavements. Therefore this type of pavement can be successfully applied to the roads, such as walks, parkways, and bikeways, which are required to be human-friendly and environment-oriented.

  • PDF

Effects of Local Climatic Conditions on the Early Growth in Progeny Test Stands of Korean White Pine (지역별 잣나무 차대검정림의 초기생장에 미치는 미기후의 영향)

  • 신만용;김영채
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • This study was conducted to reveal the effects of local climatic conditions on the early growth of Korean white pine progeny test stands. For this, stand variables such as mean DBH, mean height, basal area per hectare, and volume per hectare by stand age and locality were first measured and summarized for each stand. Based on these statistics, annual increments for 10 years from stand age 10 to 20 were calculated for each of stand variables. The effects of local climatic conditions as one of environmental factors on the growth were then analyzed by both a topoclimatological method and a spatial statistical technique. From yearly climatic estimates,30 climatic indices which affect the tree growth were computed for each of the progeny test stand. The annual increments were then correlated with and regressed on the climatic indices to examine effects of local climatic conditions on the growth. Gapyung area provided the best conditions for the early growth of Korean white pine and Kwangju area ranked second. On the other hand, the growth pattern in Youngdong ranked last overall as expected. It is also found that the local growth patterns of Korean white pine in juvenile stage were affected by typical weather conditions. The conditions such as low temperature and high relative humidity provide favor environment for the early growth of Korean white pine. Especially, it was concluded that the low temperature is a main factor influencing the early growth of Korean white pine based on the results of correlation analysis and regression equations developed far the prediction of annual increments of stand variables.

Effects of Local Climatic Conditions on the Yearly Cone Production in Progeny Test Stands of Korean White Pine (국지기후가 잣나무 차대검정림의 년도별 구과 결실량에 미치는 영향)

  • 신만용;장용석;한상억;김영채
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.3
    • /
    • pp.141-150
    • /
    • 2002
  • This study was conducted to reveal the effects of local climatic conditions on the yearly cone production in progeny test stand of Korean white pine. For this, yearly cone production by locality of progeny test stands was first measured and analyzed. The effects of climatic conditions on the cone production was analyzed by the estimation of yearly local climates based on both a topoclimatological method and a spatial statistical technique. From yearly climatic estimates, 19 climatic indices affecting cone production were computed for each of the progeny test stand. The yearly cone productions were then correlated with and regressed to the climatic indices to examine effects of local climatic conditions on the reproductive growth. According to correlation analysis, it was found that some typical climatic indices by locality were significantly correlated with the cone production. Also, the optimal regression equations which can estimate cone production by local climatic conditions were provided for applying to each of the progeny test stand of Korean white pine.

Review on Coastline Change and Its Response Along the Cotonou Coast, Benin in the Gulf of Guinea, West Africa (서아프리카 기니만에 있는 베냉 코토누의 해안선 변화와 대응에 대한 고찰)

  • Yang, Chan-Su;Hong, Hyeyeon;Shin, Dae-Woon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.691-699
    • /
    • 2021
  • The global surface temperature has risen critically over the past century and according to the IPCC Fifth Assessment Report 2014, existing risks in natural and human systems will worsen. Coastal erosion is mostly caused by climate change and among all the coastal areas at risk, Benin, which is part of the Gulf of Guinea, has been ranked very highly as a vulnerable region. Therefore, in this review, we focus on the evolution of coastline change in Cotonou of Benin, summarizing its resultant impacts and applied measures around the coast area by reviewing previous studies. Signs of coastal erosion in Cotonou appeared in 1963. After 39 years, the east shoreline of Cotonou has retreated by 885 m, resulting in the disappearance of more than 800 houses. To solve this problem, Benin authorities built seven groynes in 2013, and have increased the number of the structure as a way to interrupt water flow and limit the movement of sediment. Over the region, shorelines appeared preserved accordingly. In contrast, areas located further east, where groynes were not installed, have suf ered from intensive erosion at a rate of 49 m/yr. In the future, as a next step, the effectiveness of groynes should be studied with local and broader perspectives.

Development of a Prediction Model for Personal Thermal Sensation on Logistic Regression Considering Urban Spatial Factors (도시공간적 요인을 고려한 로지스틱 회귀분석 기반 체감더위 예측 모형 개발)

  • Uk-Je SUNG;Hyeong-Min PARK;Jae-Yeon LIM;Yu-Jin SEO;Jeong-Min SON;Jin-Kyu MIN;Jeong-Hee EUM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.81-98
    • /
    • 2024
  • This study analyzed the impact of urban spatial factors on the thermal environment. The personal thermal sensation was set as the unit of thermal environment to analyze its correlation with environmental factors. To collect data on personal thermal sensation, Living Lab was applied, allowing citizens to record their thermal sensation and measure the temperature. Based on the input points of the collected personal thermal sensation, nearby urban spatial elements were collected to build a dataset for statistical analysis. Logistic regression analysis was conducted to analyze the impact of each factor on personal thermal sensation. The analysis results indicate that the temperature is influenced by the surrounding spatial environment, showing a negative correlation with building height, greenery rate, and road rate, and a positive correlation with sky view factor. Furthermore, the road rate, sky view factor, and greenery rate, in that order, had a strong impact on perceived heat. The results of this study are expected to be utilized as basic data for assessing the thermal environment to prepare local thermal environment measures in response to climate change.