• Title/Summary/Keyword: 국부 이진 패턴

Search Result 19, Processing Time 0.026 seconds

Inverse halftoning algorithm using local binary pattern based lookup table (국부 이진패턴 기반 참조표를 이용한 역 하프토닝 알고리즘)

  • Seo, Won-Kyo;Cho, Nam-Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.134-136
    • /
    • 2015
  • 영상 역 하프토닝은 입력된 하프톤 영상으로부터 그레이 영상을 복원시키는 것으로, 하프톤 영상으로 처리하지 못하는 다양한 영상처리를 가능하게 해주는 방법이다. 기존의 참조표를 이용한 역 하프토닝 방법은 다양한 하프톤 영상과 원본 그레이 영상으로부터 추출한 정보를 이용해 입력 영상을 복원시키는데, 본 논문에서는 이를 바탕으로 하여 영상의 질을 전반적으로 향상시킬 수 있는 국부적인 이진 패턴 기반 참조표를 이용한 영상 역 하프토닝 방법을 제안한다. 먼저 참조표를 이용한 역하프토닝 방법을 이용해 영상을 복원한 후 각 픽셀에서의 국부 이진패턴을 계산하여 각 픽셀 값을 패턴에 따라 분류한다. 분류된 패턴 정보에 따라 국부 이진 패턴 기반 참조표를 생성하고 이를 통해 입력 하프톤 영상에 대한 역 하프토닝을 수행한다. 실험 결과는 제안하는 알고리즘이 오류 확산법에 의해 변환된 하프톤 이미지를 역 하프토닝 했을 때, 기존의 역 하프토닝 방법에 비해 더 나은 PSNR을 달성하는 것을 보인다.

  • PDF

Implementation of Paper Cutting Defect Detection System Based on Local Binary Pattern Analysis (국부 이진 패턴 분석에 기초한 지절 결함 검출 시스템 구현)

  • Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2145-2152
    • /
    • 2013
  • Paper manufacturing industries have huge facilities with automatic equipments. Especially, in order to improve the efficiency of the paper manufacturing processes, it is necessary to detect the paper cutting defect effectively and to classify the causes correctly. In this paper, we review the problems of web monitoring system and web inspection system that have been traditionally used in industries for defect detection. Then we propose a novel paper cutting defect detection method based on the local binary pattern analysis and its implementation to mitigate the practical problems in industry environment. The proposed algorithm classifies the defects into edge-type and region-type and then it is shown that the proposed system works stably on the real paper cutting defect detection system.

Passing Vehicle Detection using Local Binary Pattern Histogram (국부이진패턴 히스토그램을 이용한 측면 차량 검출)

  • Kang, Hyung-Sub;Cho, Dong-Chan;Ko, Kyung-Woo;Kim, Whoi-Yul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.260-263
    • /
    • 2010
  • 본 논문에서는 주행 중인 차량에서 전방을 향해 장착된 카메라를 통해 입력된 영상에서 측면에 부분적으로 나타나는 차량을 검출하는 방법을 제안한다. 기존 연구에서는 모션 벡터를 이용하여 주변 배경과 관측되는 차량 사이의 모션 벡터 차이를 이용하여 측면 차량을 검출하고 있다. 그러나 모션 벡터를 이용할 경우 정지된 차량이나 전방에서 다가오는 차량의 경우 검출하기 어려운 점이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 모션 벡터를 사용하지 않고 차량 측면 모습에서 특징 정보를 추출하여 SVM 분류기를 통해 측면 차량을 검출하는 방법을 제안한다. 차량 측면 모습의 특징을 뽑기 위해 영상의 밝기 변화에 강인한 국부 이진 패턴을 사용하였고 ROI영역 내에서 차량이 나타나는 위치에 상관없이 차량의 측면 모습을 찾아내기 위해 국부 이진 패턴의 히스토그램을 이용하였다. 실험결과에서는 제안하는 방법이 정지된 차량을 포함하여 88.5%의 정확도로 측면 차량을 검출하는 것을 확인하였다.

  • PDF

Multiple Background Modeling using Local Binary Pattern (국부이진패턴을 이용한 다중 배경 모델링 방법)

  • Chae, Young-Soo;Kim, Hyun-Cheol;Kim, Whoi-Yul
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1001-1002
    • /
    • 2008
  • 본 논문에서는 조명 또는 장면의 갑작스러운 변화에 효과적으로 배경모델링을 하기 위해 국부이진패턴을 이용한 다중 배경모델링 방법을 제안한다. 제안하는 방법은 각 장면에서 독립적인 배경모델을 이용하여 모델 업데이트를 실시한다. 이후 검출된 전경 영역의 비율이 일정 임계치를 넘게 되면 기존의 모델 중 적합한 모델을 찾거나 새로운 모델을 생성하여 현재 배경모델을 대체한다. 이는 배경모델의 성능을 유지하면서 효율적으로 장면의 변화에 바로 대응할 수 있는 장점이 있다. 실험결과에서는 실내조명이 갑작스럽게 변하는 영상과 Pan Tilt Zoom 카메라를 이용한 다중 영상에서 제안한 방법이 효과적으로 동작함을 확인할 수 있었다.

  • PDF

Palmprint Verification Using the Histogram of Local Binary Patterns (국부 이진패턴 히스토그램을 이용한 장문인식)

  • Kim, Min-Ki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.27-34
    • /
    • 2010
  • This paper proposes an efficient method for verifying palmprint which is captured at the natural interface without any physical restriction. The location and orientation of the region of interest (ROI) in palm images are variously appeared due to the translation and rotation of hand. Therefore, it is necessary to extract the ROI stably for palmprint recognition. This paper presents a method that can extract the ROI, which is based on the reference points that are located at the center of the crotch segments between index finger and middle finger and between ring finger and little finger. It also proposes a palmprint recognition method using the histogram of local binary patterns (LBP). Experiments for evaluating the performance of the proposed method were performed on 1,597 palmprint images acquired from 100 different persons. The experimental results showed that ROI was correctly extracted at the rate of 99.5% and the equal error rate (EER) and the decidability index d' indicating the performance of palmprint verification were 0.136 and 3.539, respectively. These results demonstrate that the proposed method is robust to the variations of the translation and rotation of hand.

Implementation of a Face Authentication Embedded System Using High-dimensional Local Binary Pattern Descriptor and Joint Bayesian Algorithm (고차원 국부이진패턴과 결합베이시안 알고리즘을 이용한 얼굴인증 임베디드 시스템 구현)

  • Kim, Dongju;Lee, Seungik;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1674-1680
    • /
    • 2017
  • In this paper, an embedded system for face authentication, which exploits high-dimensional local binary pattern (LBP) descriptor and joint Bayesian algorithm, is proposed. We also present a feasible embedded system for the proposed algorithm implemented with a Raspberry Pi 3 model B. Computer simulation for performance evaluation of the presented face authentication algorithm is carried out using a face database of 500 persons. The face data of a person consist of 2 images, one for training and the other for test. As performance measures, we exploit score distribution and face authentication time with respect to the dimensions of principal component analysis (PCA). As a result, it is confirmed that an embedded system having a good face authentication performance can be implemented with a relatively low cost under an optimized embedded environment.

A Method of Detecting Short and Protrusion-type FAB Defects Based on Local Binary Pattern Analysis (국부지역 이진 패턴 분석법에 기초한 단락 및 돌기형 FAB불량 검출기법)

  • Kim, Jin-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.1018-1020
    • /
    • 2013
  • Conventionally, PCB fabrication processes detects simply electrical characteristics of TCP and COF by automatic manufacturing system and additionally, by introducing human visual detection, those are very ineffective in view of low cost implementation. So, this paper presents an efficient detection algorithm for short and protrusion-type defects based on reference images by using local binary pattern analysis. The proposed methods include several preprocessing techniques such as histogram equalizing, the compensation of spatial position and maximum distortion coordination Through several experiments, it is shown that the proposed method can improve the defect detection performance compared to the conventional schemes.

  • PDF

Face Recognition Based on Facial Landmark Feature Descriptor in Unconstrained Environments (비제약적 환경에서 얼굴 주요위치 특징 서술자 기반의 얼굴인식)

  • Kim, Daeok;Hong, Jongkwang;Byun, Hyeran
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.666-673
    • /
    • 2014
  • This paper proposes a scalable face recognition method for unconstrained face databases, and shows a simple experimental result. Existing face recognition research usually has focused on improving the recognition rate in a constrained environment where illumination, face alignment, facial expression, and background is controlled. Therefore, it cannot be applied in unconstrained face databases. The proposed system is face feature extraction algorithm for unconstrained face recognition. First of all, we extract the area that represent the important features(landmarks) in the face, like the eyes, nose, and mouth. Each landmark is represented by a high-dimensional LBP(Local Binary Pattern) histogram feature vector. The multi-scale LBP histogram vector corresponding to a single landmark, becomes a low-dimensional face feature vector through the feature reduction process, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis). We use the Rank acquisition method and Precision at k(p@k) performance verification method for verifying the face recognition performance of the low-dimensional face feature by the proposed algorithm. To generate the experimental results of face recognition we used the FERET, LFW and PubFig83 database. The face recognition system using the proposed algorithm showed a better classification performance over the existing methods.

Edge Enhanced Error Diffusion Halftoning Method Using Local Activity Measure (공간활성도를 이용한 에지 강조 오차확산법)

  • Kwak Nae-Joung;Ahn Jae-Hyeong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.313-321
    • /
    • 2005
  • Digital halftoning is a process to produce a binary image so that the original image and its binary counterpart appear similar when observed from a distance. Among digital halftoning methods, error diffusion is a procedure for generating high quality bilevel images from continuous-tone images but blurs the edge information in the bilevel images. To solve this problem, we propose the improved error diffusion using local spatial information of the original images. Based on the fact that the human vision perceives not a pixel but local mean of input image, we compute edge enhancement information(EEI) by appling the ratio of a pixel and its adjacent pixels to local mean. The weights applied to local means is computed using the ratio of local activity measure(LAM) to the difference between input pixels of 3$\times$3 blocks and theirs mean. LAM is the measure of luminance changes in local regions and is obtained by adding the square of the difference between input pixels of 3$\times$3 blocks and theirs mean. We add the value to a input pixel of quantizer to enhance edge. The performance of the proposed method is compared with conventional methods by measuring the edge correlation. The halftone images by using the proposed method show better quality due to the enhanced edge. And the detailed edge is preserved in the halftone images by using the proposed method. Also the proposed method improves the quality of halftone images because unpleasant patterns for human visual system are reduced.

  • PDF

A Study on Facial Expression Recognition using Boosted Local Binary Pattern (Boosted 국부 이진 패턴을 적용한 얼굴 표정 인식에 관한 연구)

  • Won, Chulho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1357-1367
    • /
    • 2013
  • Recently, as one of images based methods in facial expression recognition, the research which used ULBP block histogram feature and SVM classifier was performed. Due to the properties of LBP introduced by Ojala, such as highly distinction capability, durability to the illumination changes and simple operation, LBP is widely used in the field of image recognition. In this paper, we combined $LBP_{8,2}$ and $LBP_{8,1}$ to describe micro features in addition to shift, size change in calculating ULBP block histogram. From sub-windows of 660 of $LBP_{8,1}$ and 550 of $LBP_{8,2}$, ULBP histogram feature of 1210 were extracted and weak classifiers of 50 were generated using AdaBoost. By using the combined $LBP_{8,1}$ and $LBP_{8,2}$ hybrid type of ULBP histogram feature and SVM classifier, facial expression recognition rate could be improved and it was confirmed through various experiments. Facial expression recognition rate of 96.3% by hybrid boosted ULBP block histogram showed the superiority of the proposed method.