영상 역 하프토닝은 입력된 하프톤 영상으로부터 그레이 영상을 복원시키는 것으로, 하프톤 영상으로 처리하지 못하는 다양한 영상처리를 가능하게 해주는 방법이다. 기존의 참조표를 이용한 역 하프토닝 방법은 다양한 하프톤 영상과 원본 그레이 영상으로부터 추출한 정보를 이용해 입력 영상을 복원시키는데, 본 논문에서는 이를 바탕으로 하여 영상의 질을 전반적으로 향상시킬 수 있는 국부적인 이진 패턴 기반 참조표를 이용한 영상 역 하프토닝 방법을 제안한다. 먼저 참조표를 이용한 역하프토닝 방법을 이용해 영상을 복원한 후 각 픽셀에서의 국부 이진패턴을 계산하여 각 픽셀 값을 패턴에 따라 분류한다. 분류된 패턴 정보에 따라 국부 이진 패턴 기반 참조표를 생성하고 이를 통해 입력 하프톤 영상에 대한 역 하프토닝을 수행한다. 실험 결과는 제안하는 알고리즘이 오류 확산법에 의해 변환된 하프톤 이미지를 역 하프토닝 했을 때, 기존의 역 하프토닝 방법에 비해 더 나은 PSNR을 달성하는 것을 보인다.
제지 제조 산업은 대규모 설비가 요구되는 장치산업으로서 생산 설비의 자동화가 꼭 요구된다. 특히 제조공정의 효율성을 얻기 위해서는 제지 제조 공정 중에서 발생하는 지절의 결함을 효과적으로 검출하고 이를 분류하는 효율적인 요소 기술을 필요로 한다. 본 논문에서는 기존의 제지 제조 공정 방식의 문제점을 제시하고, 이를 효과적으로 개선하기 위하여 국부 이진 패턴 분석에 의한 지절 결함 검출 시스템을 제안하고 구현된 결과를 제시한다. 제안한 시스템은 제지 지절 결함에 대해 국부 이진 패턴 분석법을 이용하여 분류하고 이를 인식하는 방식으로 구성된다. 제안된 시스템은 에지형과 영역형 결함으로 지절 결함으로 분류하고, 현장 시스템에 설치되어 안정적인 결과를 보임이 검증되었다.
본 논문에서는 주행 중인 차량에서 전방을 향해 장착된 카메라를 통해 입력된 영상에서 측면에 부분적으로 나타나는 차량을 검출하는 방법을 제안한다. 기존 연구에서는 모션 벡터를 이용하여 주변 배경과 관측되는 차량 사이의 모션 벡터 차이를 이용하여 측면 차량을 검출하고 있다. 그러나 모션 벡터를 이용할 경우 정지된 차량이나 전방에서 다가오는 차량의 경우 검출하기 어려운 점이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 모션 벡터를 사용하지 않고 차량 측면 모습에서 특징 정보를 추출하여 SVM 분류기를 통해 측면 차량을 검출하는 방법을 제안한다. 차량 측면 모습의 특징을 뽑기 위해 영상의 밝기 변화에 강인한 국부 이진 패턴을 사용하였고 ROI영역 내에서 차량이 나타나는 위치에 상관없이 차량의 측면 모습을 찾아내기 위해 국부 이진 패턴의 히스토그램을 이용하였다. 실험결과에서는 제안하는 방법이 정지된 차량을 포함하여 88.5%의 정확도로 측면 차량을 검출하는 것을 확인하였다.
본 논문에서는 조명 또는 장면의 갑작스러운 변화에 효과적으로 배경모델링을 하기 위해 국부이진패턴을 이용한 다중 배경모델링 방법을 제안한다. 제안하는 방법은 각 장면에서 독립적인 배경모델을 이용하여 모델 업데이트를 실시한다. 이후 검출된 전경 영역의 비율이 일정 임계치를 넘게 되면 기존의 모델 중 적합한 모델을 찾거나 새로운 모델을 생성하여 현재 배경모델을 대체한다. 이는 배경모델의 성능을 유지하면서 효율적으로 장면의 변화에 바로 대응할 수 있는 장점이 있다. 실험결과에서는 실내조명이 갑작스럽게 변하는 영상과 Pan Tilt Zoom 카메라를 이용한 다중 영상에서 제안한 방법이 효과적으로 동작함을 확인할 수 있었다.
본 논문은 물리적 제약이 없는 자연스러운 인터페이스에서 획득한 장문영상을 효과적으로 인식하는 방법을 제안한다. 손의 위치 이동이나 회전으로 인하여 손바닥 영상에서 관심영역의 위치나 방향이 다양하게 나타나므로, 장문인식을 위해서는 안정적인 관심영역 추출이 필요하다. 본 논문은 검지와 중지, 소지와 약지 사이의 손 가랑이 구간의 중심점을 기준으로 관심영역을 추출하는 방법을 제시하고, 국부 이진패턴 히스토그램을 이용한 장문인식 방법을 제안한다. 제안된 방법의 성능을 측정하기 위하여 100인으로부터 획득한 총 1,597개의 장문영상을 대상으로 실험을 수행하였다. 실험 결과 ROI 추출 성공률이 99.5%였고, 장문인식 성능을 보여주는 동일오류율과 결정계수 d'를 측정한 결과 각각 0.136, 3.539를 보였다. 이러한 결과는 제안된 방법이 손의 위치나 회전 변형에 강인함을 나타낸다.
본 논문에서는 고차원 국부이진패턴과 결합베이시안 알고리즘을 이용한 얼굴인증 임베디드 시스템을 제안한다. 또한, 제안된 알고리즘에 대한 임베디드 시스템을 라즈베리파이 3을 이용하여 구현한 결과를 제시한다. 제안된 얼굴인증 알고리즘에 대한 평가는 500명의 얼굴 데이터가 저장된 데이터베이스를 이용하여 수행하였다. 여기서 각각의 얼굴 데이터는 학습용과 테스트용 이미지로 구성하였다. 성능평가를 위한 척도로는 주성분분석법의 차원에 따른 스코어 분포와 얼굴인증 시간을 이용하였다. 그 결과, 최적화된 임베디드 환경에서 우수한 얼굴인증 성능을 가지는 임베디드 시스템을 상대적으로 저렴한 비용으로 구현할 수 있음을 확인하였다.
PCB 제작 분야에서 TCP와 COF에서는 전기적인 특성검사만으로 자동화를 이루어지고 있으며, 실제 단락 및 돌기(근사단락) 형태의 데이터 불량 등에 대해서는 노동력을 동원해 불량을 검출하고 있는 실정이다. 본 논문에서는 영상처리에 의해 국부지역패턴 분석법에 기초한 검출기법을 제안한다. 제안한 방법은 히스토그램보정, 공간위치보정 및 최대왜곡좌표를 구하는 전처리 과정을 포함하여, 지역기반의 패턴분석법이 적용된다. 모의실험을 통하여 제안한 방식은 기존의 영역기반의 검출기법에 비해 성능이 개방 및 근사개방 결함 검출에서 크게 성능을 개선할 수 있음을 보인다.
본 논문에서는 비제약적 얼굴 데이터 베이스를 위한 확장성 있는 얼굴 인식 방법을 연구하고, 간단한 실험 결과를 소개한다. 기존의 얼굴 인식 연구들은 주로 조명, 얼굴 각도, 표정, 배경 등 제약이 있는 환경에서의 정확도 향상에 초점을 맞추고 있어서 비제약적 얼굴 데이터 베이스에 사용하기에 적합하지 않다. 제안하는 얼굴인식 방법은 비제약적 얼굴 인식을 위한 특징 추출 알고리즘으로, 먼저 지역적 특징이 존재하는 눈, 코, 입과 같이 얼굴의 중요한 특징을 나타내는 영역을 분리한다. 각 얼굴 주요 위치는 고차원의 다중 스케일 국부 이진패턴 히스토그램(Multi-scale LBP histogram) 특징 벡터로 기술된다. 단일 얼굴 주요 위치에 해당하는 다중 스케일 국부 이진패턴 히스토그램 특징 벡터는 주성분 분석법(PCA: Principal Component Analysis)과 선형 판별 분석법(LDA: Linear Discriminant Analysis)의 차원 축소 과정을 통해 저차원 얼굴 특징 벡터를 생성한다. 저차원 얼굴 특징 벡터는 랭크 획득과 Precision at k(p@k) 성능 평가 방법을 이용하여 제안한 알고리즘의 얼굴 인식 성능을 검증한다. 본 연구는 FERET, LFW 및 PubFig83 데이터 베이스를 이용하여 얼굴 인식 실험을 수행하였으며, 제안한 알고리즘을 이용한 얼굴 인식 방법이 기존의 방법보다 향상된 인식성능을 보였다.
연속 계조 영상을 이진 영상으로 변환하는 방법을 해프토닝이라 한다. 이와 같은 해프토닝 방법 중 오차확산법은 연속 계조 영상을 이진 영상으로 표현할 때 우수한 화질을 보이지만 에지 영역에서는 에지 정보가 흐려지는 특성이 있다. 이를 개선하기 위해 원영상의 국부적인 공간 정보를 이용하여 에지를 강조하는 방법을 제안한다 제안 방법은 인간의 시각이 한 점을 인식하지 않고 국부 평균을 인식함을 고려하여 한 화소와 인접 화소의 평균을 이용한 비율 값을 국부 평균에 가중치로 적용하고 에지 강조 정보량(EEI : Edge enhancement information)을 구한다. 이때 국부 평균에 적용되는 가중치는 원 화소와 3$\times$3 블록의 평균과의 차이 값과 공간 활성도(LAM : Local activity measure)의 비율을 이용하여 계산된다 공간 활성도는 국부 공간의 변화량을 표현하는 척도로 3$\times$3 블록의 평균과 블록의 화소의 차이 값의 제곱의 합으로 구한다 EEI를 양자화기 입력에 더하여 해프톤 영상의 에지를 강조한다. 제안 방법의 성능은 에지 상관도 평가 함수로 평가했으며 제안 방법을 영상에 적용한 결과 이진 영상의 에지가 강조되어 시각적으로 선명한 결과를 보이며 미세한 에지도 잘 보존되었다. 또한 눈에 거슬리는 규칙적 패턴도 줄어 개선된 화질을 보여주었다.
최근 얼굴 표정 인식에 있어 영상 기반의 방법의 하나로서 ULBP 블록 히스토그램 피쳐와 SVM을 분류기로 사용한 연구가 수행되었다. Ojala 등에 의해 소개된 LBP는 높은 식별력과 조명의 변화에 대한 내구성과 간단한 연산 때문에 영상 인식 분야에 많이 사용되고 있다. 본 논문에서는 ULBP 블록 히스토그램을 계산함에 있어 분할 영역의 이동, 크기 변화에 더하여 미세한 특징 요소를 표현할 수 있도록 $LBP_{8,2}$과 $LBP_{8,1}$를 결합하였다. $LBP_{8,1}$ 660개, $LBP_{8,2}$ 550개의 분할 창으로부터 1210개의 ULBP 히스토그램 피쳐를 추출하고 이로부터 AdaBoost를 이용하여 50개의 약 분류기를 생성하였다. $LBP_{8,1}$와 $LBP_{8,2}$가 결합된 하이브리드 형태의 ULBP 블록 히스토그램 피쳐와 SVM 분류기를 이용함으로써 표정 인식률을 향상시킬 수 있었으며 다양한 실험을 통하여 이를 확인하였다. 본 논문에서 제안한 하이브리드 Boosted ULBP 히스토그램의 경우에 표정의 인식률이 96.3%로 가장 높은 결과를 보였으며 제안한 방법의 우수성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.