• Title/Summary/Keyword: 국가재난

Search Result 660, Processing Time 0.029 seconds

Development of integrated disaster mapping method (II) : disaster mapping with risk analysis (통합 재해지도 작성 기법 개발(II) : 리스크 분석을 적용한 재해지도 작성)

  • Park, Jun Hyung;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.85-97
    • /
    • 2022
  • In this study, a method for an integrated flood risk mapping was proposed that simultaneously considers the flood inundation map indicating the degree of risk and the disaster vulnerability index. This method creates a new disaster map that can be used in actual situations by providing various and specific information on a single map. In order to consider the human, social and economic factors in the disaster map, the study area was divided into exposure, vulnerability, responsiveness, and recovery factors. Then, 7 indicators for each factor were extracted using the GIS tool. The data extracted by each indicator was classified into grades 1 to 5, and the data was selected as a disaster vulnerability index and used for integrated risk mapping by factor. The risk map for each factor, which overlaps the flood inundatoin map and the disaster vulnerability index factor, was used to establish an evacuation plan by considering regional conditions including population, assets, and buildings. In addition, an integrated risk analysis method that considers risks while converting to a single vulnerability through standardization of the disaster vulnerability index was proposed. This is expected to contribute to the establishment of preparedness, response and recovery plans for providing detailed and diverse information that simultaneously considers the flood risk including social, humanistic, and economic factors.

Development of integrated disaster mapping method (I) : expansion and verification of grid-based model (통합 재해지도 작성 기법 개발(I) : 그리드 기반 모형의 확장 및 검증)

  • Park, Jun Hyung;Han, Kun-Yeun;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.71-84
    • /
    • 2022
  • The objective of this study is to develop a two-dimensional (2D) flood model that can perform accurate flood analysis with simple input data. The 2D flood inundation models currently used to create flood forecast maps require complex input data and grid generation tools. This sometimes requires a lot of time and effort for flood modeling, and there may be difficulties in constructing input data depending on the situation. In order to compensate for these shortcomings, in this study, a grid-based model that can derive accurate and rapid flood analysis by reflecting correct topography as simple input data was developed. The calculation efficiency was improved by extending the existing 2×2 sub-grid model to a 5×5. In order to examine the accuracy and applicability of the model, it was applied to the Gamcheon Basin where both urban and river flooding occurred due to Typhoon Rusa. For efficient flood analysis according to user's selection, flood wave propagation patterns, accuracy and execution time according to grid size and number of sub-grids were investigated. The developed model is expected to be highly useful for flood disaster mapping as it can present the results of flooding analysis for various situations, from the flood inundation map showing accurate flooding to the flood risk map showing only approximate flooding.

A Study on Improving the Data Quality Validation of Underground Facilities(Structure-type) (지하시설물(구조물형) 데이터 품질검증방법 개선방안 연구)

  • Bae, Sang-Keun;Kim, Sang-Min;Yoo, Eun-Jin;Im, Keo-Bae
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.5-20
    • /
    • 2021
  • With the available national spatial information that started from the sinkholes that occurred nationwide in 2014 and integrated 15 areas of underground information, the Underground Spatial Integrated Map has been continuously maintained since 2015. However, until recently, as disasters and accidents in underground spaces such as hot water pipes rupture, cable tunnel fires, and ground subsidence continue to occur, there is an increasing demand for quality improvement of underground information. Thus, this paper attempted to prepare a plan to improve the quality of the Underground Spatial Integrated Map data. In particular, among the 15 types of underground information managed through the Underground Spatial Integrated Map, quality validation improvement measures were proposed for underground facility (structure-type) data, which has the highest proportion of new constructions. To improve the current inspection methods that primarily rely on visual inspection, we elaborate on and subdivide the current quality inspection standards. Specifically, we present an approach for software-based automated inspection of databases, including graphics and attribute information, by adding three quality inspection items, namely, quality inspection methods, rules, and flow diagram, solvable error types, to the current four quality inspection items consisting of quality elements, sub-elements, detailed sub-elements, and quality inspection standards.

Analysis of the Spread of Issues Related to COVID-19 Vaccine on Twitter: Focusing on Issue Salience (코로나19 백신 관련 트위터 상의 이슈 확산 양상 분석: 이슈 현저성을 중심으로)

  • Hong, Juhyun;Lee, Mina
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.613-621
    • /
    • 2021
  • This study conducted a network analysis to determine how COVID-19 vaccine-related issue spread on Twitter during the introduction stage of the COVID-19. Issue diffusion tendency is analyzed according to the time period: phase 1 (initiation of vaccine introduction: March 7 - April 3, 2021), phase 2 (stagnant period of vaccination: April 4 - April 22, 2021), and phase 3 (increase of vaccination: April 23 - May 5, 2021). NodeXL was used for data collection and analysis. Daily Twitter network data were collected by entering search terms highly related to the COVID-19 vaccine. This study found that side effects-related opinions were repeatedly formed throughout the analysis period. As the vaccination rate increased and death cases were reported on media, death-related issues also emerged on Twitter. On the other hand, vaccine safety did not receive much attention on Twitter. The results of this study highlight the role of social media as a channel of issue diffusion when a national disaster strikes. We emphasize the need for the government to monitor public opinions on social media and reflect them in crisis communication strategies.

A development of stochastic simulation model based on vector autoregressive model (VAR) for groundwater and river water stages (벡터자기회귀(VAR) 모형을 이용한 지하수위와 하천수위의 추계학적 모의기법 개발)

  • Kwon, Yoon Jeong;Won, Chang-Hee;Choi, Byoung-Han;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1137-1147
    • /
    • 2022
  • River and groundwater stages are the main elements in the hydrologic cycle. They are spatially correlated and can be used to evaluate hydrological and agricultural drought. Stochastic simulation is often performed independently on hydrological variables that are spatiotemporally correlated. In this setting, interdependency across mutual variables may not be maintained. This study proposes the Bayesian vector autoregression model (VAR) to capture the interdependency between multiple variables over time. VAR models systematically consider the lagged stages of each variable and the lagged values of the other variables. Further, an autoregressive model (AR) was built and compared with the VAR model. It was confirmed that the VAR model was more effective in reproducing observed interdependency (or cross-correlation) between river and ground stages, while the AR generally underestimated that of the observed.

Prediction of cyanobacteria harmful algal blooms in reservoir using machine learning and deep learning (머신러닝과 딥러닝을 이용한 저수지 유해 남조류 발생 예측)

  • Kim, Sang-Hoon;Park, Jun Hyung;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1167-1181
    • /
    • 2021
  • In relation to the algae bloom, four types of blue-green algae that emit toxic substances are designated and managed as harmful Cyanobacteria, and prediction information using a physical model is being also published. However, as algae are living organisms, it is difficult to predict according to physical dynamics, and not easy to consider the effects of numerous factors such as weather, hydraulic, hydrology, and water quality. Therefore, a lot of researches on algal bloom prediction using machine learning have been recently conducted. In this study, the characteristic importance of water quality factors affecting the occurrence of Cyanobacteria harmful algal blooms (CyanoHABs) were analyzed using the random forest (RF) model for Bohyeonsan Dam and Yeongcheon Dam located in Yeongcheon-si, Gyeongsangbuk-do and also predicted the occurrence of harmful blue-green algae using the machine learning and deep learning models and evaluated their accuracy. The water temperature and total nitrogen (T-N) were found to be high in common, and the occurrence prediction of CyanoHABs using artificial neural network (ANN) also predicted the actual values closely, confirming that it can be used for the reservoirs that require the prediction of harmful cyanobacteria for algal management in the future.

Evaluating the contribution of calculation components to the uncertainty of standardized precipitation index using a linear mixed model (선형혼합모형을 활용한 표준강수지수 계산 인자들의 불확실성에 대한 기여도 평가)

  • Shin, Ji Yae;Lee, Baesung;Yoon, Hyeon-Cheol;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.509-520
    • /
    • 2023
  • Various drought indices are widely used for assessing drought conditions which are affected by many factors such as precipitation, soil moisture, and runoff. The values of drought indices varies depending on hydro-meteorological data and calculation formulas, and the judgment of the drought condition may also vary. This study selected four calculation components such as precipitation data length, accumulation period, probability distribution function, and parameter estimation method as the sources of uncertainty in the calculation of standardized precipitation index (SPI), and evaluated their contributions to the uncertainty using root mean square error (RMSE) and linear mixed model (LMM). The RMSE estimated the overall errors in the SPI calculation, and the LMM was used to quantify the uncertainty contribution of each factor. The results showed that as the accumulation period increased and the data period extended, the RMSEs decreased. The comparison of relative uncertainty using LMM indicated that the sample size had the greatest impact on the SPI calculation. In addition, as sample size increased, the relative uncertainty related to the sample size used for SPI calculation decreased and the relative uncertainty associated with accumulation period and parameter estimation increased. In conclusion, to reduce the uncertainty in the SPI calculation, it is essential to collect long-term data first, followed by the appropriate selection of probability distribution models and parameter estimation methods that represent well the data characteristics.

Establishing meteorological drought severity considering the level of emergency water supply (비상급수의 규모를 고려한 기상학적 가뭄 강도 수립)

  • Lee, Seungmin;Wang, Wonjoon;Kim, Donghyun;Han, Heechan;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.619-629
    • /
    • 2023
  • Recent intensification of climate change has led to an increase in damages caused by droughts. Currently, in Korea, the Standardized Precipitation Index (SPI) is used as a criterion to classify the intensity of droughts. Based on the accumulated precipitation over the past six months (SPI-6), meteorological drought intensities are classified into four categories: concern, caution, alert, and severe. However, there is a limitation in classifying drought intensity solely based on precipitation. To overcome the limitations of the meteorological drought warning criteria based on SPI, this study collected emergency water supply damage data from the National Drought Information Portal (NDIP) to classify drought intensity. Factors of SPI, such as precipitation, and factors used to calculate evapotranspiration, such as temperature and humidity, were indexed using min-max normalization. Coefficients for each factor were determined based on the Genetic Algorithm (GA). The drought intensity based on emergency water supply was used as the dependent variable, and the coefficients of each meteorological factor determined by GA were used as coefficients to derive a new Drought Severity Classification Index (DSCI). After deriving the DSCI, cumulative distribution functions were used to present intensity stage classification boundaries. It is anticipated that using the proposed DSCI in this study will allow for more accurate drought intensity classification than the traditional SPI, supporting decision-making for disaster management personnel.

Combined analysis of meteorological and hydrological drought for hydrological drought prediction and early response - Focussing on the 2022-23 drought in the Jeollanam-do - (수문학적 가뭄 예측과 조기대응을 위한 기상-수문학적 가뭄의 연계분석 - 2022~23 전남지역 가뭄을 대상으로)

  • Jeong, Minsu;Hong, Seok-Jae;Kim, Young-Jun;Yoon, Hyeon-Cheol;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.195-207
    • /
    • 2024
  • This study selected major drought events that occurred in the Jeonnam region from 1991 to 2023, examining both meteorological and hydrological drought occurrence mechanisms. The daily drought index was calculated using rainfall and dam storage as input data, and the drought propagation characteristics from meteorological drought to hydrological drought were analyzed. The characteristics of the 2022-23 drought, which recently occurred in the Jeonnam region and caused serious damage, were evaluated. Compared to historical droughts, the duration of the hydrological drought for 2022-2023 lasted 334 days, the second longest after 2017-2018, the drought severity was evaluated as the most severe at -1.76. As a result of a linked analysis of SPI (StandQardized Precipitation Index), and SRSI (Standardized Reservoir Storage Index), it is possible to suggest a proactive utilization for SPI(6) to respond to hydrological drought. Furthermore, by confirming the similarity between SRSI and SPI(12) in long-term drought monitoring, the applicability of SPI(12) to hydrological drought monitoring in ungauged basins was also confirmed. Through this study, it was confirmed that the long-term dryness that occurs during the summer rainy season can transition into a serious level of hydrological drought. Therefore, for preemptive drought response, it is necessary to use real-time monitoring results of various drought indices and understand the propagation phenomenon from meteorological-agricultural-hydrological drought to secure a sufficient drought response period.

Investigation of Drought Propagation and Damage Characteristics Using Meteorological and Hydrological Drought Indices (기상학적 및 수문학적 가뭄지수를 활용한 가뭄 전이 및 피해 특성 분석)

  • Kim, Ji Eun;Son, Ho-Jun;Kim, Taesik;Kim, Won-Beom;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.291-302
    • /
    • 2024
  • Sustained meteorological drought can lead to hydrological drought, known as drought propagation. The propagated droughts cause more damage to the region than the non-propagated droughts. Recent studies on drought propagation have focused on identifying the lag time using correlation analysis. There is a lack of studies comparing damage patterns between propagated and non-propagated droughts. In this study, the overlap and pooling propagation between meteorological and hydrological droughts were analyzed using drought indices in Chungcheong Province to identify drought propagation, and the propagation characteristics such as pooling, attenuation, lag and extension were analyzed. The results showed that although Chungju-si experienced a meteorological drought in 2010, no damage was caused by the drought. However, a meteorological drought in 2017 and 2018 propagated into a hydrological drought of longer duration but less severity, resulting in drought-affected damage. Similarly, Cheongyang-gun experienced a meteorological drought in 2017, but no damage was reported from the drought. However, in the neighboring county of Buyeo-gun, a meteorological drought with a similar magnitude propagated to a hydrological drought during the same period, resulting in drought-affected damage. The overall results indicated that the damage from propagated drought events was more severe than the non-propagated drought events, and these results can be used as basic data for establishing drought response policies suitable for the region.