• Title/Summary/Keyword: 구조 텐서

Search Result 93, Processing Time 0.03 seconds

Investigation of Post-seismic Sites Using Local Seismic Tomography in the Korean Peninsula (지진 토모그래피를 이용한 한반도의 과거진원지역의 특성 연구)

  • Kim So-Gu;Bae Hyung-Sub
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.111-128
    • /
    • 2006
  • Three dimensional crustal structure and source features of earthquake hypocenters on the Korean peninsula were investigated using P and S-wave travel time tomography. The main goal of this research was to find Vp/Vs anomalies at earthquake hypocenters as well as those of crustal structure of basins and deep tectonic settings. This allowed fer the extrapolation of more detailed seismotectonic force from the Korean peninsula. The earthquake hypocenters were found to have high Vp/Vs ratio discrepancies (VRD) at the vertical sections. High V/p/Vs ratios were also found in the sedimentary basins and beneath the Chugaryong Rift Zone (CRZ), which was due to mantle plume that subsequently solidified with many fractures and faults which were saturated with connate water. The hypocenters of most earthquakes were found in the upper crust for Youngwol (YE), Kyongju (KE), Hongsung (HE), Kaesong (KSE), Daekwan (DKE), and Daehung (DHE) earthquakes, but near the subcrust or the Moho Discontinuity for Mt. Songni (SE), Sariwon (SRE) and Mt. Jiri (JE) earthquakes. Especially, we found hot springs of the Daekwan, Daehung and Unsan regions coincide with high VRD. Also, this cannot rule out the possibility that there are some partial meltings in the subcrust of this region. High VRD might indicate that many faults and fractures with connate water were dehydrated when earthquakes took place, reducing shear modulus in the hypocenter areas. This is can be explained by due to the fact that a point source which is represented by the moment tensor that may involve changes in volume, shear fracture, and rigidity. High Vp/Vs ratio discrepancies (VRD) were also found beneath Mt. Backdu beneath 40 km, indicating that magma chamber existed beneath Mt. Backdu is reducing shear modulus of S-wave velocity.

Effects of Korean Red Ginseng on White Matter Microstructure and Cognitive Functions : A Focus on Intrusion Errors (고려 홍삼이 대뇌 백질 미세구조 및 인지기능에 미치는 효과 : 침입 오류를 중심으로)

  • Jeong, Hyeonseok S.;Kim, Young Hoon;Lee, Sunho;Yeom, Arim;Kang, Ilhyang;Kim, Jieun E.;Lee, Junghyun H.;Ban, Soonhyun;Lim, Soo Mee;Lee, Sun Hea
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.78-86
    • /
    • 2015
  • Objectives Although ginseng has been reported to protect neuronal cells and improve various cognitive functions, relationship between ginseng supplementation and response inhibition, one of the important cognitive domains has not been explored. In addition, effects of ginseng on in vivo human brain have not been investigated using the diffusion tensor imaging (DTI). The purpose of the current study is to investigate changes in intrusion errors and white matter microstructure after Korean Red Ginseng supplementation using standardized neuropsychological tests and DTI. Methods Fifty-one healthy participants were randomly allocated to the Korean Red Ginseng (n = 26) or placebo (n = 25) groups for 8 weeks. The California Verbal Learning Test was used to assess the number of intrusion errors. Intelligence quotient (IQ) was measured with the Korean Wechsler Adult Intelligence Scale. Depressive and anxiety symptoms were evaluated using Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Hopkins Symptom Checklist-25. The fractional anisotropy (FA) was measured from the brain DTI data. Results After the 8-week intervention, Korean Red Ginseng supplementation significantly reduced intrusion errors after adjusting age, sex, IQ, and baseline score of the intrusion errors (p for interaction = 0.005). Change in FA values in the left anterior corona radiata was greater in the Korean Red Ginseng group compared to the placebo group (t = 4.29, p = 0.04). Conclusions Korean Red Ginseng supplementation may be efficacious for improving response inhibition and white matter microstructure integrity in the prefrontal cortex.

Analysis of Semi-Infinite Problems Subjected to Body Forces Using Nonlinear Finite Elements and Boundary Elements (물체력이 작용되는 반무한영역문제의 비선형유한요소-경계요소 조합해석)

  • Hwang, Hak Joo;Kim, Moon Kyum;Huh, Taik Nyung;Ra, Kyeong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 1991
  • The underground structure, which has infinite or semi-infinite boundary conditions, is subjected by body forces and in-situ stresses. It also has stress concentration, which causes material nonlinear behavior, in the vicinity of the excavated surface. In this paper, some methods which can be used to transform domain integrals into boundary integrals are reviewed in order to analyze the effect of the body forces and the in-situ stresses. First, the domain integral of the body force is transformed into boundary integral by using the Galerkin tensor and divergence theorem. Second, it is transformed by writing the domain integral in cylindrical coordinates and using direct integration. The domain integral of the in-situ stress is transformed into boundary integral applying the direct integral method in cylindrical coordinates. The methodology is verified by comparing the results from the boundary element analysis with those of the finite element analysis. Coupling the above boundary elements with finite elements, the nonlinear behavior that occurs locally in the vicinity of the excavation is analyzed and the results are verified. Thus, it is concluded that the domain integrals of body forces and in-situ stresses could be performed effectively by transforming them into the boundary integrals, and the nonlinear behavior can be reasonably analyzed by coupled nonlinear finite element and boundary element method. The result of this research is expected to he used for the analysis of the underground structures in the effective manner.

  • PDF

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.

Effects of Addition of Sulfuric Acid on the Etching Behavior of Al foil for Electrolytic Capacitors II. Microstructures of Dielectric Layers and AC Impedance Analysis (전해 콘텐사용 알루미늄박의 애칭특성에 미치는 황산첨가의 영향 II. 유전층의 조직 및 임피던스 분석)

  • Kim, Seong-Gap;Yu, In-Jong;Sin, Dong-Cheol;O, Han-Jun;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.375-381
    • /
    • 2000
  • Aluminium foil for electrolytic capacitors was anodized at the voltage of 100V and 140V for 10 minutes in ammonium adipate solution to form aluminum oxide layer on aluminum substrate as an dielectric film. The thickness, the stoichiometry and the crystal structure of the layer were investigated by using RBS and TEM . In addition EIS technique was employed to study the effects of addition of sulfuric acid on the increment of the foil surface area. It was found that the thickness values of the layers anodized at 100V and 140V were about 130 nm and 190 nm respectively and the stoichiometry of the elements of aluminum and oxygen was 2:3. The anodic oxide layer was shown to be amorphous. but the structure irradiated with electron beam resulted in the transformation into crystalline structure of $${\gamma}$-Al_2$$O_3$ . From a comparison of the impedance results and the capacitance variation to investigate the ef- fects of sulfuric acid addition to the etching bath of hydrochloric acid, the EIS techinque could be useful to analyze the capacitance variation.

  • PDF

Intermediate Principal Stress Dependency in Strength of Transversely Isotropic Mohr-Coulomb Rock (평면이방성 Mohr-Coulomb 암석 강도의 중간주응력 의존성)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.383-391
    • /
    • 2013
  • A number of true triaxial tests on rock samples have been conducted since the late 1960 and their results strongly suggest that the intermediate principal stress has a considerable effect on rock strength. Based on these experimental evidence, various 3-D rock failure criteria accounting for the effect of the intermediate principal stress have been proposed. Most of the 3-D failure criteria, however, are focused on the phenomenological description of the rock strength from the true triaxial tests, so that the associated strength parameters have little physical meaning. In order to confirm the likelihood that the intermediate principal stress dependency of rock strength is related to the presence of weak planes and their distribution to the preferred orientation, true triaxial tests are simulated with the transversely isotropic rock model. The conventional Mohr-Coulomb criterion is extended to its anisotropic version by incorporating the concept of microstructure tensor. With the anisotropic Mohr-Coulomb criterion, the critical plane approach is applied to calculate the strength of the transversely isotropic rock model and the orientation of the fracture plane. This investigation hints that the spatial distribution of microstructural planes with respect to the principal stress triad is closely related to the intermediate principal stress dependency of rock strength.

Software Development for the Visualization of the Orientation of Brain Fiber Tracts in Diffusion Tensor Imaging Using a 24 bit Color Coding

  • Jung-Su Oh;In Chan Song;Ik-Hwan Cho;Jong-Hyo Kim;Kee Hyun Chang;Kwang-Suk Park
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • Interests in human brain functionality and its connectivity have much frown up. DTI (Diffusion tensor imaging) has been known as a non-invasive MR) technique capable of providing information on water diffusion in tissues and the organization of white matter tract. Thus. It can provide us the information on the direction of brain fiber tract and the connectivity among many important cortical regions which can not be examined by other anatomical or functional MRI techniques. In this study. was used the 24 bit color coding scheme on the IDL platform in the windows environment to visualize the orientation of major fiber tracts of brain such as main association, projection, commissural fibers and corticospinal tracts. We additionally implemented a color coding scheme for each directional component and FA (fractional anisotropy), and used various color tables for them to be visualized more definitely. Consequently we implemented a fancy and basic technique to visualize the directional information of fiber tracts efficiently and we confirmed the feasibility of the 24 bit color coding scheme in DTI by visualizing main fiber tracts.

Effect of Joint Orientation Distribution on Hydraulic Behavior of the 2-D DFN System (절리의 방향분포가 이차원 DFN 시스템의 수리적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • A program code was developed to calculate block hydraulic conductivity of the 2-D DFN(discrete fracture network) system based on equivalent pipe network, and implemented to examine the effect of joint orientation distribution on the hydraulic characteristics of fractured rock masses through numerical experiments. A rock block of size $32m{\times}32m$ was used to generate the DFN systems using two joint sets with fixed input parameters of joint frequency and gamma distributed joint size, and various normal distributed joint trend. DFN blocks of size $20m{\times}20m$ were selected from center of the $32m{\times}32m$ blocks to avoid boundary effect. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity were estimated for generated 180 2-D DFN blocks. The effect of joint orientation distribution on block hydraulic conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the decrease of mean intersection angle of the two joint sets. The effect of variability of joint orientation on block hydraulic conductivity could not be ignored for the DFN having low intersection angle between two joint sets.

Relationship between Alcohol Use Disorders Identification Test Fractional Anisotropy Value of Diffusion Tensor Image in Brain White Matter Region (알코올 선별 검사법(Alcohol Use Disorders Identification Test)과 뇌 백질 영역의 확산텐서 비등방도 계측 값의 관련성)

  • Lee, Chi Hyung;Kim, Gyeong Rip;Kwak, Jong Hyeok
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.575-583
    • /
    • 2022
  • Magnetic resonance diffusion tensor imaging (DTI) has revealed the disruption of brain white matter microstructure in normal aging and alcoholism undetectable with conventional structural MR imaging. we plan to analyze the FA measurements of the ROI of dangerous drinkers selected from Alcohol Use Disorders Identification Test (AUDIT) and Tract-Based Spatial Statics (TBSS) tool was used to extract FA values in the ROI from the image acquired through the pre-processing process. TBSS has a higher sensitivity of the FA value and MD value in the white matter than the brain gray matter, and has the advantage of quantitatively deriving the unlimited degree of brain nerve fibers, and more specialized in the brain white matter. We plan to analyze the fractional anisotropy (FA) measurement value for damage by selecting the center of the anatomical structure of the white matter region of the brain with high anisotropy among the brain neural networks that are particularly vulnerable to alcohol as the region of interest (ROI). In this study, we expected that alcohol causes damage to the brain white matter microstructure from FA value in various areas including both Choroid plexus. Especially, In the case of the moderate drunker, the mean value of FA in Lt, Rt. Choroid plexus was 0.2831 and 0.2872, whereas, in the case of the severe drunker, the mean value of FA was 0.1972 and 0.1936. We found that the higher the score on the AUDIT scale, the lower the FA value in ROI region of the brain white matter. Using the AUDIT scale, the guideline for the FA value of DTI can be presented, and it is possible to select a significant number of potentially severe drinkers. In other words, AUDIT was proved as useful tool in screening and discrimination of severe drunker through DTI.

Design of detection method for malicious URL based on Deep Neural Network (뉴럴네트워크 기반에 악성 URL 탐지방법 설계)

  • Kwon, Hyun;Park, Sangjun;Kim, Yongchul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.30-37
    • /
    • 2021
  • Various devices are connected to the Internet, and attacks using the Internet are occurring. Among such attacks, there are attacks that use malicious URLs to make users access to wrong phishing sites or distribute malicious viruses. Therefore, how to detect such malicious URL attacks is one of the important security issues. Among recent deep learning technologies, neural networks are showing good performance in image recognition, speech recognition, and pattern recognition. This neural network can be applied to research that analyzes and detects patterns of malicious URL characteristics. In this paper, performance analysis according to various parameters was performed on a method of detecting malicious URLs using neural networks. In this paper, malicious URL detection performance was analyzed while changing the activation function, learning rate, and neural network structure. The experimental data was crawled by Alexa top 1 million and Whois to build the data, and the machine learning library used TensorFlow. As a result of the experiment, when the number of layers is 4, the learning rate is 0.005, and the number of nodes in each layer is 100, the accuracy of 97.8% and the f1 score of 92.94% are obtained.