• Title/Summary/Keyword: 구조 오차

Search Result 2,088, Processing Time 0.027 seconds

Method of Earthquake Acceleration Estimation for Predicting Damage to Arbitrary Location Structures based on Artificial Intelligence (임의 위치 구조물의 손상예측을 위한 인공지능 기반 지진가속도 추정방법 )

  • Kyeong-Seok Lee;Young-Deuk Seo;Eun-Rim Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.71-79
    • /
    • 2023
  • It is not efficient to install a maintenance system that measures seismic acceleration and displacement on all bridges and buildings to evaluate the safety of structures after an earthquake occurs. In order to maintain this, an on-site investigation is conducted. Therefore, it takes a lot of time when the scope of the investigation is wide. As a result, secondary damage may occur, so it is necessary to predict the safety of individual structures quickly. The method of estimating earthquake damage of a structure includes a finite element analysis method using approved seismic information and a structural analysis model. Therefore, it is necessary to predict the seismic information generated at arbitrary location in order to quickly determine structure damage. In this study, methods to predict the ground response spectrum and acceleration time history at arbitrary location using linear estimation methods, and artificial neural network learning methods based on seismic observation data were proposed and their applicability was evaluated. In the case of the linear estimation method, the error was small when the locations of nearby observatories were gathered, but the error increased significantly when it was spread. In the case of the artificial neural network learning method, it could be estimated with a lower level of error under the same conditions.

Numerical Dispersion and Its Control for 1-D Finite Element Simulation of Stress Wave Propagation (응력파 전파 수치모의를 위한 일차원 유한요소모형의 분산 특성 및 제어)

  • 이종세;유한규;윤성범
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2004
  • With an aim at eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based one-dimensional finite element model are analyzed and some dispersion control scheme are proposed in this paper The dispersion analyses are carried out for two types of mass matrix, namely the consistent and the lumped mass matrices. Based on the finding of the analyses, dispersion correction techniques are developed for both the implicit and explicit schemes. For the implicit scheme, either the weighting factor for the spatial derivatives of each time level or the lumping coefficient for mass matrix is adjusted to minimize the numerical dispersion. In the case of the explicit scheme an artificial dispersion term is introduced in the governing equation. The validity of the dispersion correction techniques proposed in this study is demonstrated by comparing the numerical solutions obtained using the Present techniques with the analytical ones.

Analysis of SAR Image Quality Degradation due to Pointing and Stability Error of Synthetic Aperture Radar Satellite (위성체 지향 및 안정화 오차로 인한 영상레이더 위성 영상 품질 저하 해석)

  • Chun, Yong-Sik;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.445-458
    • /
    • 2008
  • Image chain analysis of synthetic aperture radar (SAR) satellite is one of the primary activities for satellite design because SAR image quality depends on spacecraft bus performance as well as SAR payload. Especially, satellite pointing and stability error make worst effect on the original SAR image quality which is implemented by SAR payload design. In this research, Image chain analysis S/W was developed in order to analyze the SAR image quality degradation due to satellite pointing and stability error. This S/W consists of orbit model, attitude control model, SAR payload model, clutter model, and SAR processor. SAR raw data, which includes total 25 point targets in the scene of $5km{\times}5km$ swath width, was generated and then processed for analysis. High resolution mode (spotlight), of which resolution is 1m, was applied. The results of image chain analysis show that radiometric accuracy is the most degraded due to the pointing error. Therefore, the successful design of attitude control subsystem in spacecraft bus for enhancing the pointing accuracy is most important for image quality.

A Parametric Study on Effects of Column Shortening Analytical Correction Using Measured Results in RC Tall Buildings (RC 고층 건물에서 계측 결과를 이용한 기둥축소 해석보정의 효과에 대한 변수 연구)

  • Song, Eun-Seok;Kim, Jae-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.38-47
    • /
    • 2020
  • A parametric study for analytical correction using measurement results was performed to minimize errors in the predictions of column shortening in RC tall building. The parameters of the column shortening analytical correction are the execution standard of analytical correction, the value of the analytical correction, and the measurement location, and the analytical correction models with the parameters were applied to the construction sequence analysis of a 41-story RC building to compare and analyze the correction effect according to the parameter. The reduction ratio of the error value for each floor was compared with the number of corrections and the total corrected value, and it was confirmed that the error tended to be minimized when the execution standard of analytical correction was performed based on a regular interval, when the analysis correction value was corrected by the error value, and when the measurement position was measured every floor. From this, it was confirmed that the most appropriate analytical correction model can be derived by applying multiple analytical correction models to the actual analysis model.

Analytical Correction Method Based on a Comparison of the Column Shortening Measurement-Prediction in Tall Buildings (고층 건축물의 기둥축소량 계측-예측의 비교를 통한 해석보정 방안)

  • Song, Eun-Seok;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.391-399
    • /
    • 2019
  • In this study, an analytical method was proposed to correct the analysis results and minimize the errors between column shortening predictions and real values in high-rise buildings. In this regard, the construction sequence analysis of 41-story reinforced concrete buildings was performed and the results were compared to four assumed field measurements that were divided into the column and the core. The analysis correction was applied at a stage over the error limit in the column and at all stages in the core. Since the error occurred continuously after the analysis was corrected, additional corrections of the analysis resulted in a smaller error. By applying the proposed analytical correction method, it was confirmed that the long-term shortening value can be accurately predicted.

Development of Moving Force Identification Algorithm Using Moment Influence Lines at Multiple-Axes and Density Estimation Function (다축모멘트 영향선과 밀도추정함수를 사용한 이동하중식별 알고리듬의 개발)

  • Jeong, Ji-Weon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.87-94
    • /
    • 2006
  • Estimating moving vehicle loads is important in modeling design loads for bridge design and construction. The paper proposes a moving force identification algorithm using moment influence lines measured at multi-axes. Density estimation function was applied to estimate more than two wheel loads when estimated load values fluctuated severely. The algorithm has been examined through simulation studies on a simple-span plate-girder bridge. Influences of measurement noise and error in velocity on the identification results were investigated in the simulation study. Also, laboratory experiments were carried out to examine the algorithm. The load identification capability was dependent on the type and speed of moving loads, but the developed algorithm could identify loads within 10% error in maximum.

Estimation of a source range using acoustic wavefront in bottom reflection environment (해저면 반사 환경에서 음파의 파면을 이용하는 음원의 거리 추정)

  • Joung-Soo Park;Jungyong Park;Su-Uk Son;Ho Seuk Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.324-334
    • /
    • 2024
  • The Wavefront Curvature Ranging (WCR) is an estimation method for a source range from the wavefront curvature of acoustic waves. The conventional method uses trigonometry to estimate the source range by assuming the sound speed as a constant. Because of this assumption, range error occurs in the ocean environment where the bottom reflection is clearly separated. In order to reduce the range error, Matched Wavefront Curvature Ranging (MWCR) was proposed applying the sound speed structure in the ocean environment and Maximum Likelihood Estimation (MLE). The range error was reduced in the results of the simulation on the proposed method. In the future, this method will be applicable to the sonar system if the reliability of ranging is confirmed by measured signal.

사장교의 진동제어를 위한 유동형 감쇠장치

  • 윤정방;방은영
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.34-37
    • /
    • 1992
  • 본 고에서는 풍하중을 받는 사장교의 진동을 제어할 목적으로 사용하는 TLD의 효과와 원리를 소개하였다. 사장교의 경우 완공 후 보다 시공중에 더 위험한 구조물이므로, 비록 완공후에 진동을 별도로 제어할 필요가 없는 경우라도 시공중에 일시적으로 진동제어를 할 경우에 편리하게 이용될 수 있다. TLD는 물의 수위를 변화시킴으로, 시공단계에 따라 변하는 사장교의 진동특성에 간편하고 효과적으로 대응할 수 있다. 아울러 교량의 노후나 설계오차 발생시에도 이에 따라 TLD의 특성의 수정이 용이하며, 구조적으로도 단순하기 때문에 유지관리가 간편한 장점이 있다.

  • PDF

IDENTIFICATION OF MODAL PARAMETERS BY SEQUENTIAL PREDICTION ERROR METHOD (순차적 예측오차 방법에 의한 구조물의 모우드 계수 추정)

  • Lee, Chang-Guen;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.79-84
    • /
    • 1990
  • The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the autoregressive and moving average model with auxiliary stochastic input (ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then, the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story building model subject to ground exitations.

  • PDF